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PREFACE

In this text on differential calculus I have continued the

plan adopted for my Analytic Geometry, wherein a few cen-

tral methods are expounded and appUed to a la,rge variety

of examples to the end that the student may learn principles,

and gain power. In this way the differential calculus makes
only a brief text suitable for a term's work and leaves for the

integral calculus, which in many respects is far more impor-

tant, a greater proportion of time than is ordinarily devoted

to it.

As material for review and to provide problems for which

answers are not given, a supplementary list, containing about

haK as many exercises as occur in the text, is placed at the

end of the book.

I wish to acknowledge my indebtedness to Professor H. W.
Tyler and Professor E. B. Wilson for advice and criticism

and to Dr. Joseph Lipka for valuable assistance in preparing

the manuscript and revising the proof.

H. B. PHILLIPS.
Boston, Mass., August, 1916.'





CONTENTS

Chapter Pages

I. Introduction 1- 9

II. Derivative and Dipfbrbntial 10- 18

III. Differentiation of Algebraic Functions 19-31

IV. Rates 32-38

v. Maxima and Minima 39- 48

VI. Differentiation of Transcendental Functions. 49- 62

VII. Geometrical Applications 63- 84

VIII. Velocity and Acceleration in a Curved Path . 85- 93

IX. Rolle's Theorem and Indeterminate Forms .... 94-100

X, Series and Approximations 101-112

XI. Partial Differentiation 113-139

Supplementary Exercises 140-153

Answers 154-160

Index 161-162





DIFFERENTIAL CALCULUS

CHAPTER I

INTRODUCTION

1. Definition of Function. — A quantity y is called a

function of a quantity x if values of y are determined by values

of X. .

Thus, if 2/
= 1 — x^, 2/ is a function of x; for a value of x

determines a value of y. Similarly, the area of a circle is a

function of its radius; for, the radius being given, the area is

determined.

It is not necessary that only one value of the function

correspond to a value of the variable. Several values may be

determined. Thus, if x and y satisfy the equation

3? — 2 xy ]- y^ = X,

then y is a function of x. To each value of x correspond two

values of y found by solving the equation for y.

A quantity u is called a function of several variables if u is

determined when values are assigned to those variables.

Thus, if 2 = x^ + y^, then 2 is a function of x and y; for,

values being given to x and y, a value of z is determined.

Similarly, the volume of a cone is a function of its altitude

and radius of base; for the radius and altitude being assigned,

the volume is determined.

2. Kinds of Functions. — An expression containing

variables is called an explicit function of those variables.

Thus Vx + 2/ is an expUcit function of x and y. Similarly, if

y = Vx-j- 1,

y is an explicit function of x.

1



2 DIFFERENTIAL CALCULUS Chap. I.

A quantity determined by an equation not solved for that

quantity is called an implicit function. Thus, if

x^ — 2 xy -\- y^ = X,

y is an implicit function of x. Also x is an implicit function

of y.

Explicit and implicit do not denote properties of the func-

tion but of the way it is expressed. An imphcit function is

rendered explicit by solving. For example, the above equa-

tion is equivalent to

y = x± Vx,

in which y appears as an explicit function of x.

A rational function is one representable by an algebraic

expression containing no fractional powers of variable quanti-

ties. For example,

a; V5 + 3

x^ + 2x

is a rational function of x.

An irrational function is one represented by an algebraic

expression which cannot be reduced to rational form. Thus

Vx + y is an irrational function of x and y.

A function is called algebraic if it can be represented by an

algebraic expression or is the solution of an algebraic equa-

tion. All the functions previously mentioned are algebraic.

Functions that are not algebraic are called transcendental.

For example, sin x and log x are transcendental functions of x.

3. Independent and Dependent Variables. — In most
problems there occur a number of variable quantities con-

nected by equations. Arbitrary values can be assigned to

some of these quantities and the others are then determined.

Those taking arbitrary values are called independent vari-

ables; those determined are called dependent variables.

Which variables are taken as independent and which as de-

pendent is usually a matter of convenience. The number of

independent variables is, however, determined by the equa-

tions.
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For example, in plotting the curve

y = 31? + X,

values are assigned to x and values of y are calculated. The
independent variable is x and the dependent variable y. We
might assign values to y and calculate values of x but that

would be much more difficult.

4. Notation. — A particular function of x is often repre-

sented by the notation / (x), which should be read, function

of x, or / of X, not / times x. For 'example,

/ (x) = Vx^+ 1

means that/ (x) is a symbol for Vx^ + 1. Similarly,

2/ = / (aj)

means that y is some definite (though perhaps unknown)

function of x.

If it is necessary to consider several functions in the same

discussion, they are distinguished by subscripts or accents or

by the use of different letters. Thus, /i (x), /a (x), /' (x),

f" (x), g (x) (read /-one of x, /-two of x, /-prime of x, /-second

of X, g of x) represent (presumably) different functions of x.

Functions of several variables are expressed by writing

commas between the variables. For example,

V =f{r, h)

expresses that «; is a function of r and h and

V = f{a, b, c)

expresses that « is a function of a, b, c.

The / in the symbol of a function should be considered as

representing an operation to be performed on the variable or

variables. Thus, if

f{x) = Vx^ + 1,

/represents the operation of squaring the variable, adding 1,

and extracting the square root of the result. If x is replaced
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by any other quantity, the same operation is to be performed

on that quantity. For example,

/ (2) = V22+ 1 = Vs.

f{y+l) = V(2/ +1)2+1 = Vf + 2y + 2.

Similarly, if

/ (x, y) = x^ + xy - 2/2,

then / (1, 2) = P + 1 . 2 - 22 = -1.

If / {x, y, z) = x^ + y^ + z^,

then f (2, -3, 1) = 2^ + (-3)2 + 1 = 14.

EXERCISES
3 0^

1. Given x + y = a , express !/ as an explicit function of x.

2. Given logio (x) = sin y, express x as an explicit function of y.

Also express 2/ as an explicit function of x.

3. If / (x) = x^ - 3 X + 2, show that/ (1) = / (2) = 0.

4. If F (x) = X* + 2 x^ + 3, show that F (-a) = F (a).

5. If F (x) = X + i, find F (x + l). Also find F (x) + 1.
X

6. If .* (x) = Vx2 - 1, find (2 x). Also find 2 .^ (x).

7. If^(x)=^3,find^(i). Alsofind^.

8. If /i (x) = 2% /2 (x) = x^ find /i !/2 (j/)]. Also find f, [/i (^)].

9. If/ (x, J/)
= X - i, show that/ (2, 1) = 2/ (1, 2) = 1.

10. Given / (x, j/) = x^ + xj/, find / {y, x)

.

11. On how many independent variables does the volume of a right

circular cylinder depend?

12. Three numbers x,y, z satisfy two equations

X2 + 2,2 + 32 = 5,

X + y +z =1.

How many of these numbers can be taken as independent variables?

5. Limit. — If in any process a variable quantity ap-

proaches a constant one in such a way that the difference of

the two becomes and remains as small as you please, the con-

stant is said to be the limit of the variable.

The use of limits is well illustrated by the incommensurable
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cases of geometry and the determination of the area of a

circle or the volmne of a cone or sphere.

6. Limit of a Function. — As a variable approaches a

limit a function of that variable may approach a limit. Thus,

as X approaches 1, x^ + 1 approaches 2.

We shall express that a variable x approaches a limit a by
the notation

x = a.

The symbol — thus means " approaches as a limit."

Let / (x) approach the limit A as x approaches a; this is

expressed by
lim/(x) = A,
x=a

which should be read, " the limit of / (x), as x approaches a,

is A."

Example 1. Find the value of

lim (x + -)•
x=l V xl

As x approaches 1, the quantity x+ - approaches 1 +tX 1

or 2. Hence

lim

Ex. 2. Find the value of

,. sin 6hm
e=o 1 + cos 9

As d approaches zero, the function given approaches

Hence
,. sin e -hm — = 0.
6=5=0 1 + cos 6

7. Properties of Limits. — In finding the limits of func-

tions frequent use is made of certain simple properties that

follow almost immediately from the definition.
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1. The limit of the sum of a finite number of functions is

equal to the sum of their limits.

Suppose, for example, X, Y, Z are three functions ap-

proaching the limits A, B, C respectively. Then X+Y+Z
is approaching A + B + C. Consequently,

lim {X + Y + Z) = A + B + C = \imX + limY + \im Z.

2. The limit of the product of a finite number of functions

is equal to the product of their limits.

If, for example, X, Y, Z approach A, B,C respectively,

then XYZ approaches ABC, that is,

lim XYZ = ABC = lira X lim Y lim Z.

3. If the limit of the denominator is not zero, the limit of the

ratio of two functions is equal to the ratio of their limits.

Let X, Y approach the limits A, B and suppose B is not

X A
zero. Then ^ approaches „ , that is,

,. X A limX

If B is zero and A is not zero, -?, will be infinite. Then

X A X
y cannot approach „ as a limit; for, however large y. may

become, the difference of -^ and infinity will not become small.

8, The Form jr ,
— When x is replaced by a particular

value, a function sometimes takes the form ^ • Although this

symbol does nob represent a definite value, the function may
have a definite limit. This is usually made evident by writ-

ing the function in a different form.

Example 1. Find the value of

,, x^-1
iim r-

x=l X-l
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When X is replaced by 1, the function takes the form

1-1
1-1 0'

Since, however,

T =X+l,
X — 1

the function approaches 1 + 1 or 2. Therefore

lim—^ = 2.
x=l x— 1

Ex. 2. Find the value of

,. (\/r+^ - 1)
lim
a:=0 X

When X = the given function becomes

1-1 ^0
"O"

Multiplying numerator and denominator by Vl + a; + 1,

Vl+x-

1

^ X 1

X ~
X {Vl + x + 1)

~ Vl + x + 1

As X approaches 0, the last expression approaches |. Hence

^^(vr+^-i)^i
x=o X 2

9. Infinitesimal. — A variable approaching zero as a

limit is called an infinitesimal.

Let a and fi be two infinitesimals. If

lim^

is finite and not zero, a and ^ are said to be infinitesimals of

the same order. If the hmit is zero, a is of higher order than

|8. If the ratio ^ approaches infinity, /3 is of higher order

than a. Roughly speaking, the higher the order, the smaller

the infinitesimal.
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For example, let x approach zero. The quantities

X, 0?, 3?, 3^, etc.

are infinitesimals arranged in ascending order. Thus x* is of

higher order than x^; for

lim -; = lim x^ — 0.
x=oX'' 1=0

Similarly, 3? is of lower order than 3^, since

3^ X

approaches infinity when x approaches zero.

As x approaches ^ , cos x and cot x are infinitesimals of the

same order; for

,. cos x ,. .

lim—-— = lim sin cc = 1,
T, cot X 1=0

which is finite and not zero.

EXERCISES

Find the values of the following limits:

. ,. a;2-2x + 3 ... Vl - s^ - Vl + a;"
1. hm ^ 4. hm —

;=D X- 5 x=0 ^
„ ,. sin 9 + cos 9
2-

>^"^.sin29 + cos2e- 5. Iim^i5_£.
«=

J 9=0 tan 9

« ,. a' — 3a; + 2 ... sin
3. hm r-' 6. hm

x=\ X — \ s=osin 2 9

7. By the use of a table of natural sines find the value of /

,. sinx
Imi
a:=0 ^

8. Define as a Umit the area within a closed curve.

9. Define as a limit the volume within a closed surface.

10. Define V2.

11. On the segment PQ (Fig. 9a) construct a series of equilateral tri-

angles reaching from P to Q. As the number of triangles is increased,
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their bases approaching zero, the polygonal line PABC, etc., approaches

PQ. Does its length approach that of PQ?

A
\/ \/

Fig. 9a.

12. Inscribe a series of cylinders in a cone

as shown in Fig. 9b. As the number of cyl-

inders increases indefinitely, their altitudes

approaching zero, does the sum of the vol-

umes of the cylinders approach that of the

cone? Does the sum of the lateral areas of

the cylinders approach the lateral area of the

cone? Fig. 9b.

13. Show that when x approaches zero, tan - does not approach a

limit.

14. As X approaches 1, which of the infinitesimals 1 — x and Vl — x

is of higher order?

15. As the radius of a sphere approaches zero, show that its volume

is an infinitesimal of higher order than the area of its surface and of the

same order as the volume of the circumscribing cylinder.



CHAPTER II

DERIVATIVE AND DIFFERENTIAL

10. Increment. — When a variable changes value, the

algebraic increase (new value minus old) is called its in-

crement and is represented by the symbol A written before

the variable.

Thus, if X changes from 2 to 4, its increment is

Ax = 4 - 2 = 2.

If X changes from 2 to —1,

Ax = -1-2 = -3.

When the increment is positive there is an increase in

value,' when negative a decrease.

Let y he a, function of x. When x receives an increment

Ax, an increment Ay will be

determined. The increments

of X and y thus correspond.

To illustrate this graphically

let X and y be the rectangular

coordinates of a point P. An
equation

y =fix)

represents a curve. When x

changes, the point P changes

to some other position Q on the curve. The increments of

X and y are

Ax = PR, Ay = RQ. (10)

11. Continuous Function. — A function is called con-

tinuous if the increment of the function approaches zero as

the increment of the variable approaches zero.

10
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' In Fig. 10, 2/ is a continuous function of x; for, as Ax
approaches zero, Q approaches P and so Ay approaches zero.

In Figs. 11a and lib are shown two ways that a function

can be discontinuous. In Fig. 11a the curve has a break at

Y
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The slope of the tangent at P is called the slope of the curve

at P.

Example. Find the

slope of the parabola

y = x^ at the point (1, 1).

Let the coordinates of

P be X, y. Those of

Q are a; + Ax, y + Ay.

Since P and Q are both

on the curve,

y =x^

and

y + Ay=-{x + Axy =
x2 + 2 a; Ax + (Aa;)^.

Subtracting these equations, we get

Ay = 2xAx+ {Axy.

Dividing by Aa;,

^^2a=+A.T.
Aa;

As Aa; approaches zero, this approaches

Slope at P = 2 X.

This is the slope at the point with abscissa x. The slope at

(1, 1) is then 2-1=2.

13. Derivative. Let w be a function of x. If -r^
Ax

approaches a limit as Ax approaches zero, that limit is called

the derivative of y with respect to x. It is represented by the

notation Dxy, that is,

Ay
D^y = lim ^

Ai=o Ax
(13a)

If a function is represented by / (x), its derivative with

respect to x is often represented by/' (x). Thus

f (x) = lim^^ = Z)^(x).
^=0 iiX

(13b)
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In Art. 12 we found that this Umit represents the slope of

the curve y = fix). The derivative is, in fact, a function

of X whose value is the slope of

the curve at the point with ab-

scissa X.

The derivative, being the limit

Aw
of -T-^ , is approximately equal

to a small change in y divided

by the corresponding small

change in x. It is then large or

small according as the small in-

crement of y is large or small in

comparison with that of x.

If small increments of x and

Aw
y have the same sign -r— and Fig. 13.

its limit Dxy are positive. If they have opposite signs D^y

is negative. Therefore Dxy is positive when x and y increase

and decrease together and negative when one increases as the

other decreases.

Example. y = x? — 3x + 2.

Let x receive an increment Ax. The new value of x is

X + Ax. The new value oiy isy + Ay. Since these satisfy

the equation,

y + Ay={x + Axy -3{x + Ax)+ 2.

Subtracting the equation

y = oi^-3x + 2,

we get

Ay = 3x^Ax + 3x (Ax)^ + (Ax)' - 3 Ax.

Dividing by Ax,

Ay
Ax

= 3x^ + 3xAx + {Axy - 3.

As fyx approaches zero this approaches the limit

Dxy = 3 a;2 - 3.
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The graph is shown in Fig. 13. At A (where x = 1) y =
and Dxy = 3-1 — 3 = 0. The curve is thus tangent to the

a>axis at A. The slope is also zero at B (where x = —1).

This is the highest point on the arc AC. On the right of A
and on the left of B, the slope D^y is positive and x and y in-

crease and decrease .together. Between A and B the slope

is negative and y decreases as x increases.

EXERCISES

1. Given y = Vx, find the increment of y when x changes from

I = 2 to X = 1.9. Show that the increments approximately satisfy

the equation
A^ 1_.
Ax 2 VS

2. Given y = logio x, find the increments of y when x changes from

50 to 51 and from 100 to 101. Show that the second increment is ap-

proximately half the first.

3. The equation of a certain line iay = 2 x + .3. Find its slope by
Aw

calculating the limit of -p-

4. Construct the parabola y = x'' — 2 x. Show that its slope at

the point with abscissa "x is 2 (x — 1). Find its slope at (4, 8). At
what point is the slope equal to 2?

5. Construct the curve represented by the equation y = x* — 2 x'.

Show that its slope at the point with abscissa x is 4 x (x^ — 1). At what
points are the tangents parallel to the x-axis? Indicate where the slope

is positive and where negative.

In each of the following exercises show that the derivative has the

value given. /Also find the slope of the corresponding curve at x = — 1.

6.
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As A.X approaches zero, -i— approaches Dxy and so « ap-

proaches zero.

The increment of y is

Ay = DxV Ax + eAa;.

The part

D^y Ax (14)

is called the principal part of Ay. It differs from Ay by an

amount eAx. As Ax approaches zero, e approaches zero, and

so eAx becomes an indefinitely small fraction of Ax. It is an

infinitesimal of higher order than Ax. If then the principal

part is used as an approximation for Ay, the error will be

only a small fraction of Ax when Ax is sufficiently small.

Example. When x changes from 2 to 2.1 find an approxi-

mate value for the change in y = -

In exercise 9, page 14, the derivative of - was found to

be 1- Hence the principal part of Ay is

-\Ax= -7(.1) = -0.0250.
x^ 4

The exact increment is

The principal part represents Ay with an error less than 0.002

which is 2% of Ax.

15. Differentials. ^Let x be the independent variable

and let y be a function of x. The principal part of Ay is

called the differential of y and is denoted by dy; that is,

dy = D^^y Ax. (15a)

This equation defines the differential of any function y of x.

In particular, ii y = x, D^y = 1, and so

dx = Ax, (15b)

that is, the differential of the independent variable is equal to
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its increment and the differential of any function y is equal to

the product of its derivative and the increment of the independent

variable.

Combining 15a and 15b, we get

dy = Dxy dx, (15c)

whence X = "^"V' (1^^)

dy
that is, the quotient -^ is equal to the derivative ofy vnth respect

to X.

Since D^y is the slope of the curve y = f {x), equations 15b

and 15c express that dy and dx are the sides of the right tri-

angle PRT (Fig. 15) with

hypotenuse PT extending

along the tangent at P.

On this diagram, Aa; and Ay
are the increments

Ax = PR, Ay = RQ,

occurring in the change

from P to Q. The differen-

tials are

dx = PR, dy = RT.

A point describing the

curve is moving when it

passes through P in the direction of the tangent PT. The

differential dy is then the amount y would increase when x

changes ixi x + Ax if the direction of motion did not change.

In general the direction of motion does change and so the

actual increase Ay = RQ is different from dy. If the in-

crements are small the change in direction will be small and

so Ay and dy will be approximately equal.

Equation 15c was obtained under the assumption that x

was the independent variable. It is still valid if x and y are

continuous functions of an independent variable t. For then

dx = Dtx At, dy = Dty At.
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The identity

Ay _ Ay Ax
Ai~Ax"Ai

gives in the limit

Dty = D^y • DfX.
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The error in the area is approximately

dA=d (a;2) =2xdx= ±0.02 x^ = ±0.02 A,

which is 2% of the area.

EXERCISES

1. Let n be a positive integer and y = a;". Expand

A?/ = (a; + Ax)" — x"

by using the binomial theorem. Show that

^ = nx-K
ax

What is the principal part of Ay?

2. Using the results of Ex. 1, find an approximate value for the in-

crement of a^ when x changes from 1.1 to 1.2. Express the error as a

percentage of Ax.

dA
3. If A is the area of a circle of radius r, show that -j- is equal to the

circumference.

4. If the radius of a circle is measured and its area calculated by
using the result, show that an error of 1% in the measurement of the

radius will lead to an error of about 2% in the area.

5. If V is the volume of a sphere with radius r, show that -y- is equal

to the area of its surface.

6. Let V be the volume of a cylinder with radius r and altitude h.

dv
Show that if r is constant -jr is equal to the area of the base of cylinder

an
dv

and if h is constant -7- is equal to the lateral area.

7. If 2/ = / (x) and for all variations ia x, dx = Ax, dy = Ay, show
that the graph oi y = f (x) is a straight line.

8. If y is the independent variable and x = f (y), make a diagram

showing dx, dy. Ax, and Ay.

9. If the 2/-axis is vertical, the a;-axis horizontal, a body thrown hori-

zontally from the origin with a velocity of 50 ft. per second will in t

seconds reach the point

X = 50t, y = -16 tK

Find the slope of its path at that point.

10. A line turning about a fixed point P intersects the x-axis at A
and the y-swa at B. If Ki and K2 are the areas of the triangles OPA and
OPB, show that

dKi^PA^
dKi PB^'



CHAPTER III

DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

16. The process of finding derivatives and differentials

is called differentiation. Instead of applying the direct

method of the last chapter, differentiation is usually per-

formed by means of certain formulas derived by that method.

In this work we use the letter d for the operation of taking the

differential and the symbol -r-jior the operation of taking

the derivative with respect to x. Thus

d {u + v) = differential of (m + w),

J- (m + w) = derivative of {u + v) with respect to x.

To obtain the derivative with respect to x we proceed as in

finding the differential except that d is everywhere replaced

""^dTx

17. Formulas. — Let u, v, w be continuous functions of a

single variable x, and c, n constants.*

I. dc = 0.

II. d {u-\- v) = du + dv.

III. d {cu) = c du.

IV. d (tfv) = u dv -\- V du.

fu\ V du — ti dv
V. d[-) = 3

VI. d (it") = nu"'-'- du.

* It is assumed that the functions u, v, w have derivatives. There

exist continuous functions,

u =f{x),

19
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18. Proof of I. — The differential of a constant is zero.

When a variable x takes an increment Ax, a constant does

Ac
not vary. Consequently, Ac = 0, -r— = 0, and in the limit

dc
-^ = 0. Clearing of fractions,

dc = dx-0 = 0.

19. Proof of n. — The differential of the sum of a finite

number of functions is equal to the sum of their differentials.

Let

y = u + V.

When X takes an increment Ax, u will change to w + Am, v

to «; + Ay, and y to j/ + Ay. Consequently

y + Ay = u + Au + v-j- Av.

Subtraction of the two equations gives

Ay = Au + Av,

whence
Ay _ Aw Ay

Aa;
~ Ax Ax

. .
,

Ay Au Av , dy du dv
As Ax approaches zero, ^, ^, ^^ approach ^, ^, ^
respectively. Therefore

dy _du dv

dx dx dx'

and so

dy = du + dv.

By the same method we can prove

d{u±v±w dc • • • ) = du±dv±dw± • • • .

such that
Au
Ax

does not approach a limit as Ax approaches zero. Such a function has

no derivative DxU and therefore no differential

du = DxU dx.



Chap. III. ALGEBRAIC FUNCTIONS 21

20. Proof of in. — The differential of a constant times a

function is equal to the constant times the differential of the

function.

Let y = cu.

Then y + Ay = c(u + Am)

and so Ay = c~"Am,

Ay _ Am
Ax "" Ax

A A 1 Ay , Am , dy , du
As Ax approaches zero, -r-.and c-ir- approach j- and c-j--

Therefore

whence
dy = c du.

Fractions with a constant denominator should be differen-

tiated by this formula. Thus

dy _ du

dx dx'

'^©='^(^)=^"-

21. Proof of IV. — The differential of the product of two

.
functions is equal to the first times the differential of the second

plus the second times the differential of the first.

Let y = uv.

Then y + Ay = (u + Am) (v + Av)

= uv -\-v Am + (m + Am) Av.

Subtraction gives

Ay = V Am + (m + Am) Av,

whence
Aw Am , , , . , Aw

Since m is a continuous function, Am approaches zero as Ax
approaches zero. Therefore, in the limit,

dy _ du do

dx dx dx
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and so

dy = V du + u dv.

In the same way we can show that

d (uvw) = uv dw -\- uw dv -\-vw du.

22. Proof of V. — The differential of a fraction is equal to

the denominator times the differential of the numerator minus

the numerator times the differential of the denominator, all-

divided by the square of the denominator.

Let
u

y = -
Then

and
, w + Am u V Am — m At;
Ay - -

Dividing by Ax,

V -\- Av V V {v + Av)

. Am At;
At/ V-: M-7-
-r^ = Ax Ax
Ax

V (v + Av)

Since t; is a continuous function of x, Av approaches zero as Ax
approaches zero. Therefore

du dv

dy _ dx dx

dx v^

whence
, V du — udv
dv- ^

23. Proof of VI. — The differential of a variable raised to a

constant -power is equal to the product of the exponent, the variable

raised to a power one less, and the differential of the variable.

We consider three cases depending on whether the exponent

is a positive whole number, a positive fraction,' or a negative

number. For the case of irrational exponent, see Ex. 25,

page 61.
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(1) Let n be a positive integer and y = u". Then

and

Ly = nu"-^ Am + ^ ^\~ ^^
m"-^ (Am)^ + • • .

Dividing by Am,

Ah , , n (n — 1) „ , , , ,

-^ =nM"-iH ^^"2—^M"-2 (Am) + • • .

As Am approaches zero, this approaches

-^ = nM"-!.
du

Consequently,
dy = nu"~''- du.

V

(2) Let n be a positive fraction - and y — u''= u". Then

2/« = M".

Since p and g are both positive integers, we can differentiate

both sides of this equation by the formula just proved.

Therefore
qy^~^ dy = pu'^~'^ du.

p

Solving for dy and substituting m' for y, we get

VU^ V ^

dy = du = -u du = nu"~^ du.
« p nP-- q

qu *

(3) Let n be a negative number — m. Then

W = M" = M""" =" M"

Since m is positive, we can find d (m") by the formulas proved

above. Therefore, by V,

, u"'d(l) — ld{u'^) —7rmr~Hu „,, ,,
dy = ^ „^„ —- = ^ = —mu-'^-^du = nu"-^ du.



24 DIFFERENTIAL CALCULUS Chap. III.

. Therefore, whether n is an integer or fraction, positive or

negative,

d (m") = nw"""' du.

If the numerator of a fraction is constant, this formula can be

used instead of V. Thus

d ( - j
= d icu~^) == —cu~^ du.

Example 1. y = 43^.

Using formulas III and VI,

dy = 4 d (x^) = 4 • 3 a;2 dx = 12 a;2 da;.

Ex.2, y = Vl +~ + 3.

Vx
This can be written

y = x^ + x 2+3.

Consequently, by II and VI,

dy _d (xi) d (x-i) d (3)

dx dx dx dx

1 —idx 1 —sdx
, n

= 2^^d^-2^^di+

2VZ 2V'^

Ex. 3. y = (x + a) (x^ - b^).

Using IV, with u = x + a, v = x^ — V,

= (x + a)(2x-0) + (3?- ¥) (1 + 0)

= 3 a;2 + 2 ax - 62.

Ex.4.. y = $^-
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Using V, with u = x^ + 1, v = x^ — 1,

, (x" -l)d (x' + 1) - (x^ +l)d {x^ - 1)
'^'^

~
{?? - ly

^ {x^-\)2xdx- jx" + l)2xdx

_ Axdx
'~ ~

(a;2 -1)2'

Ex. 5. y = Va;2 - 1.

Using VI, with u = x^ — 1,

= i (a;2 - 1)-^ (2 a;) =
Vx2- 1

Ex. 6. cc^ + a;2/ — 2/^ = 1.

We can consider y a function of x determined by the equa-

tion. Then
d ix') + d (xy) - d (y2) = d (1) = 0,

that is,

2 X dx + X dy + y dx ~ 2 y dy = 0,

(2x + y)dx+{x-2y)dy = 0.

Consequently,

d^ ^ 2x-\-y

dx 2y — x

Ex.7. a; = < + -, y = t
- -.

In this case

dx = dt — ^, dy = dt + ^-
Consequently,

% ^ ^ t^ ^ l±l
dx 1 t^-l

f

/I _ x\i
Ex. 8. Find an approximate value of 2/ = ( . 1 when

X = 0.2.
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When X = 0, y = 1. Also

2dx
^~

3(l-a;)^(l+a;)*'

When a; = this becomes

dy = -f da;.

If we assume that dy is approximately equal to Ay, the change

in y when x changes from to 0.2 is approximately

dy = -f (0.2) = -0.13.

The required value is then

y = l- 0.13 = .87.

EXERCISES

In the following exercises show that the differentials and derivatives

have the values given

:

1. y = 3x* + ix' -6x' + 5, di ^ 11 {x" + x^ - x) dx.

3 3, dy Zx^-2

g3 - x^ + 1 dy 3 x' - 2 a:

^- y
~

5
' dx 5

4. y = (,x + 2a){x- ay, dy = 3 (y? - a") dx.

5. J/
= a; (2a;- 1) (3a; + 2), ^ = ISa;^ + 2a; - 2.

1 _ -2a;cfa;
6- 2/ = ^?:pi-

''y -
(a;2 + if

_ 2 X + 3 -22dx (i 1 Ve^-l-e
'•^"4x-5'''^ (4x-5J^ ^"- d9 0+V^2Tri= ^/W^^l '

d \ -2x _ 2x ^ a2-2s2
(ix (x - I)'' (x - 1)' ds« va- - s> = y^, _ ^j

/ {l-t)di J y a?dy

dx Vx / x' Vo^ - x^
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^ = (24 + 13a; -36a;2) (2- 3a;) (2x - 3)=.

18. 2/ = (x+l)(2-3a;)2(2x-3P,

1-1

19 = a;" dy _ maa:"'-'
*

"^

'

da;

~
"^

_i_ 1

*

(a + ia;")"" (a-|-6x")«+'

20. . = ^^V.-^. t3 ar*
'

dx
jfi Va:2 + 1

'

(x + vr+T')"+^ (x + vrr^o"-'
' ij ,« I 1 '

22. .x2 + 2/2 = a2,

« + 1 K - 1

d?/ = 2 (x + VrTx'2)"dx.

d^ _ X

dx V

23. x3 + ,3 = 3 ax.. | =
P^^-

24. 2 x^ - 3 X2/ + 4 2/2 = 3 X,
d^ _ 4x — 3)/ — 3

dx ~ 3 X — 8 2/

25. 1 + 1 = h ydx-xdy = 0.

n~ 1 dx da
26. 2/

= -1 I

" - - n
a;' Vl+x'+Vr+a*"

27. 2/'" + x'"2/" = x^™, mydx =nx dy.

I 2 J + 3 d2/ ^

29. x=i-V<2-l, y=t+^e-l, xdy + ydx = 0.

X
31. Given y = .^ ^ „ , find an approximate value for ?/ when

X = 4.2.

32. Find an approximate value of

i/5
T X

X + 1

X^ -|- X + 1

when X = .3.

33. Given y = x^ find d2/ and Ay when x changes from 3 to 3.1. Is

dy a satisfactory approximation for Ay? Express the difference as a
percentage of Ay.

34. Find the slope of the curve

2/ = X (x5 + 31)^

at the point x = 1.

35. Find the points on the parabola y^ = iax where the tangent is

incUned at an angle of 45° to the x-axis.
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36. Given y = (a + x) Va — x, for what values of x does y increaae

as X increases and for what values does y decrease' as x increases?

37. Find the points P {x, y) on the curve

,1
y = x + -

where the tangent is perpendicular to the line joining P to the origin,

38. Find the angle at which the circle <

x^ + y'^ = 2x-Zy
intersects the a;-axis at the origin.

39. A line through the point (1, 2) outs the x-axis at {x, 0) and the

2/-axis at (0, y). Find -—

40. If a;2 — a; + 2 = 0, why is the equation

:^ (x2 - a; + 2) =
ax

not satisfied?

41. The distances x, x' of a point and its image from a lens are con-

nected bv the equation

- + - = -
x^x' r

/ being constant. If L is the length of a small object extending along

the axis perpendicular to the lens and L' is the length of its image, show

that

.

MIT
approximately, x and x' being the distances of the object and its image

from the lens.

24. Higher Derivatives. — The first derivative ^^ is a

function of x. Its derivative with respect to x, written ^-^

.

is called the second derivative of y with respect to x. That

is,

^ = -^ /%Y
dx^ dx \dx)

Similarly,

d^^d^
l^\

db? dx \dxy'

^ =1W etc
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The derivatives of / (x) with respect to x are often written

/' (a=), /" (.x),f"' (x), etc. Thus, ii y = f (x),

| = /'(x). g = /"(x), g = r(x),etc.

Exafnple 1. y = x^.

Differentiation with respect to x gives

All higher derivatives are zero. ,
,

\

JEx. 2. x^ + xt/ + 2/' = 1.
^ '^^

Differentiating with respect to x,

2x + ,+x|+2,|=0,
whence

dy ^ 2x + j/

dx X + 2 J/

The second derivative is

3x^-Sm^= __d /2xJ-_^\ ^_2dx__^
dx2 dx U + 2 2// (x + 2 y)'

dv

Y by its value in terms of x and y

(Py 6 (x^ + x?/ + 2/^) 6

Replacing -~ by its value in terms of x and y and reducing,

dx2 (x + 2 yy (x + 2 2/)'

The last expression is obtained by using the equation of the

curve x^ + xy -\- y^ = 1. By differentiating this second

derivative we could find the third derivative, etc.
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25. Change of Variable. — We have represented the

second derivative by -r^ . This can be regarded as the quo-

tient obtained by dividing a second differential

d^y = d (dy)

by (dxy. The value of d^y will however depend on the vari-

able with respect to which y is differentiated.

d^y
Thus, suppose y = x^, x = t'. Then -r^ = 2 and so

d^ = 2 (dxY = 2 (3 <2 dty = 18 1^ {dty.

If, however, we differentiate with respect td t, since y = t^,

^ = 30 ^« and
df

d?y = 30 t" {dty,

which is not equal to the value obtained when we differen-

tiated y with respect to x.

For this reason we shall not use differentials of the second

or higher orders except in the numerators of derivatives.
'

dj^ti d^v
Two derivatives like -^ and -r^ must not be combined like

dr ax'

fractions because d^y does not have the same value in the two

cases.

If we have derivatives with respect to t and wish to find

derivatives with respect to x, they can be found by using the

identical relation

du

d _ du dt^ _ dt ,„ V

dx dt dx dx

Tt

For example,

dx\dtj dt\di) dx dx
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1 1 d'y
Example. Given x = t — -

, y = t + -, find -r|

In this case

dy ^ f_ ^ f - 1

dx ,, ,
dt f + l'

dl + -.

Consequently,

d^y _ d ff - 1\_ it dt _ 4t 1 _ 4f
dx \f + 1/ {('

EXERCISES

Find -r and -r4 in each of the following exercises:
ax ax'

1. y = r- 5. x^ + 2/" = a?.
X — 1

2. y = Va2 - x2. 6. x'' -2y^ = 1.

3. y = (x - 1)3 (x + 2)<. 7. X2/ = a + ?/.

4. !/^ = 4 X. 8. x^ + t/» = ai

9. If a and b are constant and y = ax^ + bx, show that

dx' dx

10.



CHAPTER IV

RATES

26. Rate of Change. — If the change in a quantity z is

proportional to the time in which it occurs, z is said to change

at a constant rate. If Az is the change occurring in an in-

terval of time Ai, the rate of change of z is

Az

Af
If the rate of change of z is not constant, it will be nearly

Az
constant if the interval Ai is very short. Then -r- is ap-

proximately the rate of change, the approximation becoming

greater as the increments become less. The exact rate of

change at the time t is consequently defined as

^fr-%' 0^'

that is, the rate of change of any quantity is its derivative with

respect to the time. <

If the quantity is increasing, its rate of change is positive;

if decreasing, the rate is negative.

27. Velocity Along a Straight Line. — Let a particle P
move along a straight hne (Fig. 27). Let s = OP be con-

s As

P
Fig. 27.

sidered positive on one side of 0, negative on the other. If

the particle moves with constant velocity the distance As in

the time Ai, its velocity is

As
At'

If the velocity is not constant, it will be nearly so when A<
As

is very short. Therefore -rr is approximately the velocity, the

32
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approximation becoming greater as At becomes less. The
velocity at the time t is therefore defined as

„=liin^ = g. (27)
A(=o At dt ^ '

This equation shows that ds is the distance the particle

would move in a time dt if the velocity remained constant.

As a rule the velocity will not be constant and so ds will be

different from the distance the particle does move in the

time dt.

When s is increasing, the velocity is positive; when s is

decreasing, the velocity is negative.

Example. A body starting from rest falls approxinaately

s = 16 i2

feet in t seconds. Find its velocity at the end of 10 seconds.

The velocity at any time t is

dv
t, = ^ = 32 « ft./sec*

dt

At the end of 10 seconds it is

V •= 320 ft./sec.

28. Acceleration Along a Straight Line. — The accelera-

tion of a particle moving along a straight line is defined as

the rate of change of its velocity. That is

« = 5=g- (^'

This equation shows that Uv is the amount v would increase

in the time dt if the acceleration remained constant.

The acceleration is positive when the velocity is increasing,

negative when it is decreasing.

Example. At the end of t seconds the vertical height of a

ball thrown upward with a velocity of 100 ft./sec. is

h = 100t-lQ f.

Find its velocity and acceleration. Also find when it is

rising, when falling, and when it reaches the highest point.

* The notation ft./sec. means feet per second. Similarly, ft./sec.^,

used for acceleration, means feet per second per second.
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The velocity and acceleration are

v = j^ (100 - 32 ft./sec,

a = ^ = -32 ft./sec.2.

The ball will be rising while v is positive, that is, until t =

-^ = 3|. It will be falling after i = 3|. It will be at the

highest point when < = 3|.

29. Angular Velocity and Acceleration. — Consider a

body rotating about a fixed axis. Let d be the angle turned

^P through at time t. The angular veloc-

ity is defined as the rate of change of

9, that is,

angular velocity = to = -^ •

at
Fig '^9

The angular acceleration is the rate

of change of angular velocity, that is,

, , .. do} (P9
angular acceleration = a = -tt = ttt

•

dt dt^

Example 1. A wheel is turning 100 revolutions per minute

about its axis. Find its angular velocity.

The angle turned through in one minute will be

CO = 100 • 2 TT = 200 T radians/min.

Ex. 2. A wheel, starting from rest under the action of a

constant moment (or tv/ist) about its axis, will turn in t

seconds through an angle

8 = kt\

k being constant. Find its angular velocity and acceleration

at time t.

By definition

0) = jT = 2 ftf rad./sec,

a = -jT = 2k rad./sec*.
at
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30. Related Rates. — In matny cases the rates of change

of certain variables are known and the rates of others are to

be calculated. This is done by expressing the quantities

whose rates are wanted in terms of those whose rates are

known and taking the derivatives with respect to t.

Exam,ple 1. The radius of a cylinder is increasing 2 ft. /sec.

and its altitude decreasing 3 ft./sec. Find the rate of change

of its volume.

Let r be the radius and h the altitude. Then

V = irr'-ll.

The derivative with respect to t is

By hypothesis

dv ,dh,^ , dr

dr _ _ dh _
di~^' dt~

~^-

Hence

-r- = 4 irrh — 3 TT^-
dt

This is the rate of increase when the radius is r and altitude

h. If r = 10 ft. and /i = 6 ft«,

-77= — 60 TT cu. ft./sec.
dt

Ex. 2. A ship B sailing south at 16 miles per hour is north-

west of a ship A sailing east at 10 miles per hour. At what

rate are the ships approaching?

Let X and y be the distances of the ships A and B from the

point where their paths cross. The distance between the

ships is then

s = Vx^ + 2/2.

This distance is changing at the rate

dx dy

ds ^dt^^di
^ Va;2 + 9
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By hypothesis,

;t7 = 10, -| = -16, , = ,

" = cos45° = —^•
at dt Vx' + y^ VX2 + 2/2 V2

Therefore

ds 10 - 16

dt V2
= -3\/2mi./hr.

The negative sign shows that s is decreasing, that is, the

ships are approaching.

EXERCISES

1. From the roof of a house 50 ft. above the street a ball is thrown

upward with a speed of 100 ft. per second. Its height above the ground

t seconds later will be

A = 50 + 100 < - 16 fi.

Find its velocity and acceleration when t = 2. How long does it con-

tinue to rise? What is the highest point reached? p4 /
2. A body moves in a straight line according to the law

s = it* - il' + 16P.

Find its velocity and acceleration. During what interval is the velocity

decreasing? When is it moving backward?

3. If V is the velocity and a tht acceleration of a particle jnoving

along the a;-axis, show that

adx = V dv.

4. If a particle moves along a line with the velocity

t)2 = 2 gs,

where g is constant and s the distance from a fixed point in the line, show
that the acceleration is constant.

6. When a particle moves with constant speed around a circle with

center at the origin, its shadow on the a^-axis moves with velocity v

satisfying the equation

2,2 4- „2j;2 = ^2^2^

n and r being constant. Show that the acceleration of the shadow is

proportional to its distance from the origin.

6. A wheel is turning 500 revolutions per minute. What is its

angular velocity? If the wheel is 4 ft. in diameter, with what speed does

it drive a belt?



Chap. IV. RATES . 37

7. A rotating wheel is brought to rest by a brake. Assuming the

friction between brake and wheel to be constant, the angle turned

through in a time t will be

e = a + bt - cfi,

a, b, c being constants. Find the angular velocity and acceleration.

When wiU the wheel come to rest?

8. A wheel revolves according to the law w = 30 < + <', where m is

the speed in radians per minute and t the time since the wheel started.

A second wheel turns according to the law 9 = Ifi, where t is the time

in seconds and 9 the angle in degrees through which it has turned. Which
wheel is turning faster at the end of one minute and how much?

9. A wheel of radius r rolls along a line. If v is the velocity and a

the acceleration of its center, a the angular velocity and a the angular

acceleration about its axis, show that

V = Tec, a = ra.

10. The depth of water in a cylindrical tank, 6 feet in diameter, ia

increasing 1 foot per minute. Find the rate at which the water is flow-

ing in.

11. A stone dropped into a pond sends out a series of concentric

ripples. If the radius of the outer ripple increases steadily at the rate

of 6 ft. /sec, how rapidly is the area of disturbed water increasing at

the end of 2 seconds?

12. At a certain instant the altitude of a cone is 7 ft. and the radius

of its base 3 ft. If the altitude is increasing 2 ft./sec. and the radius of

its base decreasing 1 ft./sec, how fast is the volume increasing or de-

creasing?

13. The top of a ladder 20 feet long slides down a vertical wall. Find
the ratio of the speeds of the top and bottom when the ladder makes an
angle of 30 degrees with the ground.

14. The cross section of a trough 10 ft. long is an equilateral triangle.

If water flows in at the rate of 10 cu. ft./sec, find the rate at which the

depth is increasing when the water is 18 inches deep.

15. A man 6 feet tall walks at the rate of 5 feet per second away from
a lamp 10 feet from the ground. WTien he is 20 feet from the lamp post,

find the rate at which the end of his shadow is moving and the rate at

which his shadow is growing.

16. A boat moving 8 miles per hour is laying a cable. Assuming
that the water is 1000 ft. deep, the cable is attached to the bottom and
stretches in a straight line to the stern of the boat, at what rate is the
cable leaving the boat when 2000 ft. have been paid out?

17. Sand when poured from a height on a level surface forms a cone
with constant angle ^ at the vertex, depending on the material. If the
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sand is poured at the rate of c cu. ft./sec, at what rate is the radius in-

creasing when it equals a?

18. Two straight railway tracks intersect at an angle of 60 degrees.

On one a train is 8 miles from the junction and moving toward it at the

rate of 40 miles per hour. On the other a train is 12 miles from the

junction and moving from it at the rate of 10 miles per hour. Find

the rate at which the trains are approaching or separating.

19. An elevated car running at a constant elevation of 50 ft. above

the street passes over a surface car, the tracks crossing at right angles.

If the speed of the elevated car is 16 miles per hour and that of the sur-

face car 8 mUes, at what rate are the cars separating 10 seconds after

they meet?

20. The rays of the sun make an angle of 30 degrees with the hori-

zontal. A ball drops from a height of 64 feet. How fast is its shadow

moving just before the ball hits the ground?



CHAPTER V

MAXIMA AND MINIMA

31. -A function of x is said to have a maximum a,t x = a,

if when x = a the function is greater than for any other value

in the immediate neighborhood of a. It has a minimum if

when X = a the function is less than for any other value of x

sufficiently near a.

If we represent the function by y and plot the curve

y = / Wi ^ maximum occurs at the top, a minimum at the

bottom of a wave.

If the derivative is continuous, as in Fig. 31a, the tangent

is horizontal at the highest and lowest points of a wave and

the slope is zero. Hence in determining maxima and minima

of a function / (a;) we first look for values of x such that

lfix)=nx) = o.

If a is a root of this equation, / (a) may be a maximum, a

minimum, or neither.

T
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atx = a, iff (x) is positive for values of xa little less and negor

tive for values a little greater than a.

If the slope is negative on the left and positive on the right,

as at B, the curve rises on both sides and the ordinate is a

minimum. That is, / (x) has a minimum at x = a, iff (x) is

negative for values of xa little less and positive for values a little

greater than a.

If the slope has the same sign on both sides, as at C, the

curve rises on one side and falls on the other and the ordinate

is neither a maximum nor a minimum. That is, / (x) has

neither a maximum nor a minimum at x = a iff (x) /los the

same sign on both sides of a.

Example 1. The sum of two numbers is 5. Find the maxi-

mum value of their product.

Let one of the numbers be x. The other is then 5 — x.

The value of x is to be found such that the

product

y = X ib — x) = 5 X — x^

is a maximum. The derivative is

f = 5-2x.
ax

This is zero when x = f . If x is less than

Fig. 31b. ti the derivative is positive. If x is greater

than f the derivative is negative. Near
a; = J the graph then has the shape shown in Fig. 31b. At
a; = f the function has its greatest value

f (5 - f) = ¥•

Ex. 2. Find the shape of the pint cup which requires for

its construction the least amount of tin.

Let the radius of base be r and the depth h. The area of

tin used is

A = TTT^ + 2 irrA.

Let V be the number of cubic inches in a pint. Then

v = irr^h.
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Consequently,

and

h =
irr'

4 = Trr^ + 2v

Since t and v are constants,

dA
dr

2 — — = 2 (^ ~ "V
J.2

^ ^2 y

This is zero if tit' = v. If there is a maximum or minimum
it must then occur when

= V!;

dA
for, if r has any other value, -p will have the same sign on

both sides of that value and A will be neither a maximum nor

a minimum. Since the amount of tin used cannot be zero

there must be a least amount. This must then be the value

of A when v = in^. Also v = irr%. We therefore conclude

that r = h. The cup requiring the

least tin thus has a depth equal to

the radius of its base.

Ex. 3. The strength of a rec-

tangular beam is proportional to

the product of its width by the

square of its depth. Find the

strongest beam that can be cut

from a circular log 24 inches in

diameter.

In Fig. 31c is shown a section

of the log and beam. Let x be the breadth and y the depth

of the beam. Then

a;2 + 2/2 = (24)2.

The strength of. the beam is

S = kxy^ = kx (242 _ a.2)^

Fig. 31c.
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k being constant. The derivative of S is

dS

dx
= k (24^ - 3 x2).

If this is zero, x = ±8 Vs. Since x is the breadth of the

beam, it cannot be negative. Hence

a; = 8^3

is the only solution. Since the log cannot be infinitely strong,

there must be a strongest beam. Since no other value can

give either a maximum or a minimum, a; = 8 v3 must be

the width of the strongest beam. The corresponding depth

is 2/
= 8 Ve.

Ex. 4. Find the dimensions of the largest right circular

cylinder inscribed in a given right circular cone.

Let r be the radius and h the altitude of the cone. Let

X be the radius and y the altitude of

an inscribed cylinder (Fig. 31d). From
the similar triangles DEC and ABCj

DE^AB
EC BC'

that is,

y h

r
y = - (r - x).

Fig. 31d.

r — X

The volume of the cylinder is

V = irx'^y = — {rx^ — x^)

.

Equating its derivative to zero, we get

2 rx - 3 a;^ = 0.

Hence x = or a; = | r. The value a; = obviously does

not give the maximum. Since there is a largest cylinder, its

radius must then be a; = | r. By substitution its altitude is

then found to be 2/ = ^h.

32. Method of Finding Maxima and Minima. — The
method used in solving these problems involves the following

steps:
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(1) Decide what is to be a maximum or minimum. Let

it be y.

(2) Express y in terms of a single variable. Let it be x.

It may be convenient to express y temporarily in terms of

several variable quantities. If the problem can be solved by
our present methods, there will be relations enough to elimi-

nate all but one of these.

(3) Calculate -p and find for what values of x it is zero.

(4) It is usually easy to decide from the problem itself

whether the corresponding values of y are maxima or minima.

If not, determine the signs of -j^ when a; is a little less and

a little greater than the values in question and apply the

criteria given in Art. 31.

EXERCISES

Find the maximum and minimum values of the following functions:

1. 2 a;2 _ 5 x + 7. 3. x* -2x^ + Q.

2. 6 + 12 a; - x\ 4.
^^

•

Va? - x'

Show that the following functions have no maxima or minima:

5. x\ 7. 6 a;* - 15 a^ + 10 x\

6. a? + 4 X. 8. X Va^ + a;".

9. Show that x +- has a maximum and a minimum and that the
X

maximum is less than the minimum.
10. The sum of the square and the reciprocal of a number is a mini-

mum. Find the number.

11. Show that the largest rectangle with a given perimeter is a
square. <

12. Show that the largest rectangle that can be inscribed in a given

circle is a square.

13. Find the altitude of the largest cylinder that can be inscribed in

a sphere of radius a.

14. A rectangular box with square base and open at the top is to be

made out of a given amount of material. If no allowance is made for

thickness of material or waste in construction, what are the dimensions

of the largest box that can be made?
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15. A cylindrical tin can closed at both ends is to have a given

capacity. Show that the amount of tin used wiE be a minimum when
the height equals the diameter.

16. What are the most economical proportions for an open cylindrical

water tank if the cost of the sides per square foot is two-thirds the cost

of the bottom per square foot?

17. The top, bottom, and lateral surface of a closed tin can are to be

cut from rectangles of tin, the scraps being a total loss. Find the most

economical proportions for a can of given capacity.

18. Find the volume of the largest right cone that can be generated

by revolving a right triangle of hypotenuse 2 ft. about one of its sides.

19. Four successive measurements of a distance gave ai, 02, Oa, 04 as

results. By the theory of least squares the most probable value of the

distance is that which makes the sum of the squares of the four errors a

minimum. What is that value?

20. If the sum of the length and girth of a parcel post package must

not exceed 72 inches, find the dimensions of the largest cylindrical jug

that can be sent by parcel post.

21. A circular filter paper of radius 6 inches is to be folded into a

conical filter. Find the radius of the base of the filter if it has the

maximum capacity.

22. Assuming that the intensity of light is inversely proportional to

the square of the distance from the source, find the point on the line

joining two sources, one of which is twice as intense as the other, at

which the illumination is a minimum.

23. The sides of a trough of triangular section are planks 12 inches

wide. Find the width at the top if the trough has the maximum
capacity.

24. A fence 6 feet high runs parallel to and 5 feet from a wall. Find

the shortest ladder that will reach from the ground over the fence to

the wall.

26. A log has the form of a frustum of a cone 29 ft. long, the diameters

of its ends being 2 ft. and 1 ft. A beam of square section is to be cut

from the log. Find its length if the volume of the beam is a maximum.
26. A window has the form of a rectangle surmounted by a semi-

circle. If the perimeter is 30 ft., find the dimensions so that the greatest

amount of Ught may be admitted.

27. A piece of wire 6 ft. long is to be cut into 6 pieces, two of one length

and four of another. The two former are bent into circles which are

held in parallel planes and fastened together by the four remaining

pieces. The.whole forms a model of a right cylinder. Calculate the

lengths into which the wire must be divided to produce the cylinder of

greatest volume.
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28. Among all circular sectors with a given perimeter, find the one

which has the greatest area.

29. A ship B is 75 miles due east of a ship A. If B sails west at 12

miles per hour and A south at 9 miles, find when the ships will be closest

together.

30. A man on one side of a river J mile wide wishes to reach a point

on the opposite side 5 miles further along the bank. If he can walk 4

miles an hour and swim 2 miles an hour, find the route he should take

to make the trip in the least time.

31. Find the length of the shortest Une which will divide an equi-

lateral triangle into parts of equal area.

32. A triangle is inscribed in an oval curve. If the area of the tri-

angle is a maximum, show graphically that the tangents at the vertices

of the triangle are parallel to the opposite sides.

33. A and C are points on the same side of a plane mirror. A ray of

Ught passes from A to C by way of a point B on the mirror. Show that

the length of the path ABC will be a minimum when the lines AB,
CB make equal angles with the perpendicular to the mirror.

34. Let the velocity of light in air be Vi and in water Vi. The path of

a ray of light from a point A in the air to a point C below the surface of

the water is bent at B where it enters the water. If fli and 0i are the

angles made by AB and BC with the perpendicular to the surface, show
that the time required for light to pass from A to C wiU be least if B is so

placed that
sin $1 _ vi

sin 62 Vi

35. The cost per hour of propelling a steamer is proportional to the

cube of her speed through the water. Find the speed at which a boat

should be run against a current of 5 miles per hour in order to make a

given trip at least cost.

36. If the cost per hour for fuel required to run a steamer is propor-

tional to the cube of her speed and is $20 per hour for a speed of 10 knots,

and if the other expenses amount to $100 per hour, find the most econom-

ical speed in atill water.

33. Other Types of Maxima and Minima. — The method
given in Art. 31 is sufficient to determine maxima and minima
if the function and its derivative are one-valued and continu-

ous. In Figs. 33a and 33b are shown some types of maxima
and minima that do not satisfy these conditions.

At B and C, Fig. 33a, the tangent is vertical and the de-

rivative infinite. At D the slope on the left is different from
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that on the right. The derivative is discontinuous. At A
and E the curve ends. This happens in problems where

values beyond a certain range are impossible. According to

Fig. 33a.

our definition, y has maxima at A, B, D and minima at C
and E.

If more than one value of the function corresponds to a

single value of the vari-

able, points like A and

B, Pig. 33b, may occur.

At such points two values

of y coincide.

These figures show
that in determining max-

ima and minima special

attention must be given

to places where the de-

rivative is discontinuous,

the function ceases to exist, or two values of the function

coincide.

Exatnyle 1. Find the maximum and minimum ordinates

on the curve y^ = 7?.

In this case, y = x^ and

dy 2 _i

dx 3

Fig. 33b.

No finite value of x makes the derivative zero, but a; =
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makes it infinite. Since y is never negative, the value is a

minimum (Fig. 33c).

Y

Ex. 2. A man on one side of a river J mile wide wishes to

reach a point on the opposite side 2 miles down the river. If

he can row 6 miles an hour and walk 4, find the route he

should take to make the trip in the least time.

i_

2

Fig. 33d. Fig. 33e.

Let A (Fig. 33d) be the starting point and B the destina-

tion. Suppose he rows to C, x miles down the river. The

time of rowing will be ^ Va;^ + J and the time of walking

J (2 — a;). The total time is then

t = i ViH=l + H2 - x).

Equating the derivative to zero, we get

'6 Vx^ + i 4

which reduces to 5 a;^ + f = 0. This has no real solution.
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The trouble is that J (2 — a;) is the time of walking only

if C is above B. If C is below B, the time is i (r — 2).

The complete value for t is then

t = iv^n ± i (2 - x),

the sign being + if x < 2 and — if a; > 2. The graph of

the equation connecting x and t is shown in Fig. 33e. At

X = 2 the derivative is discontinuous. Since he rows faster

than he walks, the minimum obviously occurs when he rows

all the way, that is, x = 2.

EXERCISES

Find the maximum and minimum values of y on the following curves

:

1. x' + 2/' = a^. 3. 2/3 = X* - 1.

2. y^ = x'{x - 1). 4. X = t' + i^, y = t' - tK

6. Find the rectangle of least area having a given perimeter.

6. Find the point on the parabola y^ — ix nearest the point

(-1,0).

7. A wire of length I is cut into two pieces, one of which is bent to

form a circle, the other a square. Find the lengths of the pieces when
the sum of the areas of the square and circle is greatest.

8. Find a point P on the line segment AB such that PA^ + PB' is

a maximum.
9. If the work per hour of moving a car along a horizontal track is

proportional to the square of the velocity, what is the least work re-

quired to move the car one mile?

10. If 120 cells of electromotive force E volts and internal resistance

2 ohms are arranged in parallel rows with x cells in series in each row,

the current which the resulting battery will send through an external

resistance of J ohm is

60 xE
C =

s2 + 20

How many cells should be placed in each row to give the maximum
current?



CHAPTER VI

DIFFERENTIATION OF TRANSCENDENTAL
FUNCTIONS

34. Formulas for Differentiating Trigonometric Func-

tions. — Let u be the circular measure of an angle.

d sin u = cos u du.

d cos v, — — sin u du.

d tan u = sec^ u du.

d cot u = — csc^ u du.

d sec u = sec u tan u du.

d CSC u = — CSC u cot M du.

VII.

VIII.

IX.

X.

XL
XII.

The negative sign occurs in the differentials of all co-

functions.

35. The Sine of a Small Angle. — Inspection of a table

of natural sines will show that

the sine of a small angle is very

nearly equal to the circular meas-

ure of the angle. Thus

sin 1° = 0.017452,

180
= 0.017453.

We should then expect that

,. sin 6lim-^= 1.
9=0 O

(35) Fig. 35.

To show this graphically, let d = AOP (Fig. 35). Draw
PM perpendicular to OA. The circular measure of the angle

is defined by the equation

arc arc AP
e =

rad. OP
49
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Also sin d = jyp . Hence

sing _ MP _ chord QP
e

~
arc AP ~ arc QP

As 6 approaches zero, the ratio of the arc to the chord ap'

proaches 1 (Art. 53). Therefore the limit of —r- is 1.

36, Proof of VII, the Differential of the Sine. — Let

y = sinu.

Then
y + Ay = sin (u -\- Am)

and so

Ay = sin (w + Am) — sin u.

It is shown in trigonometry that

; sin A - sin 5 = 2 cos I (A + B) sin | (A - B).

If then A = u+ Am, B = u,

~ Ay = 2cos {u + i Am) sin § Au,

whence

Am „ / , 1 . , sin A Am ,
, , . , sin i Am^ = 2cos(m + i Am) ^^

= cos (m + |Am) ^ ^^ .

As Am approaches zero

sin § Am _ sin 8

I Am ~ ~e~

approaches 1 and cos (m + § Am) approaches cos u. There-

fore

dy
-rr = cos M.
au

Consequently,
dy = cos u du.

37. Proof of Vm, the Differential of the Cosine.— By
trigonometry

cosM = sin(^ — MJ-
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Using the formula just proved,

dcosu = d sin (^ — wj = cosf^ — u]dl- — u]= —sin u du.

38. Proof of IX, X, XI, and XII. — Differentiating both

sides of the equation
sin u

tan u =
COSM

and using the formulas just proved for the differentials of

sin u and cos u,

cos M d sin M — sin w d cos u cos^ udu + sin^ u du
d tan u = 5

=
„^ . „.

COS^ U COS'' u
= sec^ u du.

By differentiating both sides of the equations

COS M 1 1
cot u = —. , sec u =

, CSC u =
sin u cos u sin M

'

and using the formulas for the differentials of sin u and cos u,

we obtain the differentials of cot u, sec u and esc u.

Example 1. y = sin^ (a;^ + 3).

Since
sin2 (a;2 + 3) = [sin (x^ + 3)]^,

we use the formula for u^ and so get

dy=-2 sin (a;^ + 3)d sin (x^ + 3)

= 2 sin (a;2 + 3) cos {x^ + 3) d {x^ + 3)

= 4 X sin (a;2 + 3) cos {x^ + 3) dx.

Ex. 2. y = sec2x tan 2 x.

-r = sec 2 a; T- tan 2x + tan 2 a; -5- sec 2 a;

dx ax dx

= sec 2 a; sec^ 2 a; (2) + tan 2 x sec 2 a; tan 2 x (2)

= 2 sec 2 a; (sec^ 2 a; + tan^ 2 x)

.

EXERCISES

In the following exercises show that the derivatives and differentials

have the values given:

1. 2/ = 2 sin 3 a; + 3 cos 2 a;, -p = Q (cos 3 x — sin 2 x).
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2. y = sin' -

,

dy = sin ^ cos ^ dx.

3. 2/ = 2 cos a;sin 2a;— sin a; cos 2 s, dy =Z cos x cos 2 x dx.

, 1 — cos ix dy X — cos \ x
4» V ==^ — ,

—— ^ —

•

sin i a; dx Z sin' J a;

dy
6. 2/ = tan 2 a; + sec 2 a;, -3^ = 2 sec 2 x (sec 2 a; + tan 2 a;).

e ,,a; ,a; d?/ .a; .xt ,x
,

,,x\
6. y = cot'^csc'^, ^ = -cot2Csc'2(csc'2 + cot'-j-

7. X = a cos t, y = asin^ /, -^ = —3 sin t cos i.

da;

8. a; = a (</> — sin 0), « = a (1 — cos </>), 3^ = cot ^•
ax i

d?v 1
9. .-c = cos i + i sin <, y = sint — t cos t, -rK = r--

. ax' t COS'' c
'

10. 2/ =|cot'i—icot'x+cotx+x, dy = —cot'xdx.
J,'

11. y = i tfirf s + f tan'x+ tan x, dy = sec' x dx.

12. M = ^ sec' 9 — f sec' 9 +^ sec' 9, du = tan" 9 sec' 9 d9.

13
/cos'x \,1., ,2. -J J

'• V = x\—q— —cos ^
I + Q sin' X + ^ sm X, dy = x sm' x dx.

^. cosx/1 .. ,5., ,5. \,5 , -Bj14. y = =— I ^sm'x + YoSin'x + gSinx j + T^x, dy = sm' x dx.

., _ 1 + sin X dy 2 cos x
15. y = -^r-^

—
:—

,

-r- = ,ri
- rz-

1 — sin X dx (1 — sin x)'

^„ _ sec X — tan x dy _ 2 sec x (tan x — sec x)

sec X + tan x

'

dx ~
sec x + tan x

17. y = (cotx — 3tanx) Vcotx, -,- = 5—

•

"^ 2cot^x

18. II y = A cos (?ix) + B sin (rax), where A and B are constant,

show that

19. Find a constant A such that j/ = A sin 2 x satisfies the equation

g + 52/ = 3sin2x.

20. Find constants A and B such that y = A sin 6 x + 5 cos 6 x

satisfies the equation

S+4x+«^=^^'"^-
21. Find the slope of the curve 2/ = 2 sin a; + 3 cos a; at the point

TT
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22. Find the points on the curve y = x + sin2x where the tangent

is parallel to the line y = 2 x + 3.

23. A weight supported by a spring hangs at rest at the origin. If

the weight is lifted a distance A and let faU, its height at any subsequent

time t will be
y = A cos {2imt),

n being constant. Find its velocity and acceleration as it passes the

origin. Where is the velocity greatest? Where is the acceleration

24. A revolving light 5 miles from a straight shore makes one com-

plete revolution per minute. Find the velocity along the shore of the

beam of light when it makes an angle of 60 degrees with the shore line.

26. In Ex. 24 with what velocity would the light be rotating if the

spot of light is moving along the shore 15 miles per hour when the

beam makes with the shore line an angle of 60 degrees?

26. Given that two sides and the included angle of a triangle have at

a certain instant the values 6 ft., 10 ft., and 30 degrees respectively, and
that these quantities are changing at the rates of 3 ft., —2 ft., and 10

degrees per second, how fast is the area of the triangle changing?

27. OA is a crank and AB a connecting rod attached to a piston B
moving along a line through 0. If OA revolves about with angular

velocity. fc), prove that the velocity of B is MC, where C is the point in

which the Une BA cuts the line through O perpendicular to OB.
28. An alley 8 ft. wide runs perpendicular to a street 27 ft. wide.

What is the longest beam that can be moved horizontally along the

street into the alley?

29. A needle rests with one end in a smooth hemispherical bowl. The
needle will sink to a position in which the center is as low as possible.

If the length of the needle equals the diameter of the bowl, what will be
the position of equilibrium?

30. A rope with a ring at one end is looped over two pegs in the same
horizontal line and held taut by a weight fastened to the free end. If

the rope slips freely, the weight will descend as far as possible. Find
the angle formed at the bottom of the loop.

31. Find the angle at the bottom of the loop in Ex. 30 if the rope is

looped over a circular pulley instead of the two pegs.

32. A gutter is to be made by bending into shape a strip of copper so

that the cross section shall be an arc of a circle. If the width of the strip

is a, find the radius of the cross section when the carrying capacity is a
maximum.

33. A spoke in the front wheel of a bicycle is at a certain instant per-

pendicular to one in the rear wheel. If the bicycle rolls straight ahead,

in what position will the outer ends of the two spokes be closest together?
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39. Inverse Trigonometric Functions. — The symbol
sin~i X is used to represent the angle whose sine is x. Thus

y = sin~* X, x = sin y

are equivalent equations. Similar definitions apply to cos~^ x

tan~^ x, cot""' X, sec~' x, and csc~' x.

Since supplementary angles and those differing by mul-

tiples of 2 7r have the sam'e sine, an indefinite number of

angles are represented by the same symbol sin"' x. The
algebraic sign of the derivative depends on the angle dif-

ferentiated. In the formulas given below it is assumed that

sin~' u and csc~' u are angles in the first or fourth quadrant,

COS"' u and sec~' u angles in the first or second quadrant.

If angles in other quadrants are differentiated, the opposite

sign must be used. The formulas for tan-'w and cot~'M

are valid in all quadrants.

40. Formulas for Differentiating Inverse Trigonometric

Functions. —
duXm. d sin-'

XIV.

XV.

XVI. dcot-'tt =

XVII. d sec-' u =

xvni.

vT w
du

Vl-u^
du-

l + u"'

du
1+1?'

du

u Vw^ _ i'

du

u Vm^ _ 1

41. Proof of the Formulas. — Let

y = sin-i u.

Then
siny = u.

Differentiation gives

cos y dy = du,
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whence dy = '

'^ cosy
But

cos 2/ = ± Vl — sin^ 2/ = ± Vl — w'.

If y is an angle in the first or fourth quadrant, cos y is positive.

Hence

cos y = Vl — u^

and so

, du
dy =

Vl -m2

The other formulas are proved in a similar way.

1. ^ = sin-i {Sx - 1),

EXERCISES

3dx

V6x - 9a;2

V2 ax - x2

dx
3. 2/ = tan-'|^, - 6dx

4. 2/ = cof-(i-rj.
dv_ -2

5. 2/ = sec~^ V4x + 1, d^/

dx x^ + l

dx

(4 X + 1) Vx1,3 dy 1
6. 2/=^csc-"

1. y = tan

2 4x-l dx V2 + 2x-4x2
X — a dy _ a

X + a dx x' -\- a?

dx
8. X = csc~' (seo0),

Hfi
~ ~^'

o -1 ^ ^2/
9. 2/ = sin 1-

Va? - x2 d^; (a2 _ 3;2) Vo^ - 2 x^

10. y = sec-i
,

^
, ^ = ^

.

V 1 — x^ dx Vl — x^

11. 2/ =
I
v^^:^^ + 1 sin-i^, g ^ v^^r^s.

HO i _, 4sinx rf,. 4
12. 2/ = tan^ „ . , , 5» = 1

3 + 5COSX ckc 5 + 3COSX

13.2/ = sec-^,^, g=__^.
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14. y = asin-i- + V^TT^, <k = J^^-" a dx ^ a + X

15. 2/ = 2(3x + l)* + 4cot-i^^-^-±^.

dj/ L
dx (3a; + 1)8+4 (3a; + 1)^'

ic 1* -1 3^ dy 1_
16. 2/ = 5 tan •

6 2 + 2a;2 dx 4a;* + 17a;2+4
_,x + l 2 . 2x dt/ a: + 1

17. 2/ = cos ' s Tocos';; j j- = :

,
=•

" 2 V3 3 - a; dx (3 _ a;) V3 - 2x - a;2

_ Vx' - g' ]_ _jX ^ 1

^~ 2oV 2
03*'^"

a' dx~ajVx2 - o^'

. ,
X + Vx2 + 4 X - 4 ^ 1

19. y = tan-' ^ ^ -^Vx^+4x-4

20. y = x sin-' x + Vl - x^ ^ =
.

^

21. 2/ = x2 sec-' I - 2 Vx^":^, ^ = 2xsec-i|-

22. Let s be the arc from the x-axis to the point (x, y) on the circle

x2 + 2/2 = a*. Show that

* = _«, *=«, ds2=rfx.+d^..
ax y ay x

23. Let A be the area bounded by the circle x^ -\- y'^ = a?, the y-a,jaa

and the vertical line through (x, y). Show that

A = xy + a^ tan"' - , dA = 2 2/ dx.

24. The end of a string wound on a pulley moves with velocity v

along a line perpendicular to the axis of the pulley. Find the angular

velocity with which the pulley turns.

25. A tablet 8 ft. high is placed on a wall with its base 20 ft. above the

level of an observer's eye. How far from the wall should the observer

stand that the angle of vision subtended by the tablet be a maximum?

42. Exponential and Logarithmic Functions. — If a is a

positive constant and u a variable, a" is called an exponential

function. If m is a fraction, it is understood that a" is the

positive root.

li y = a", then u is called the logarithm of y to base a.

That is,

2/ = a", u = logay (42a)
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If X receives a small

are by definition equivalent equations. Elimination of u
gives the important identity

aio8.!'=2/. (42b)

This expresses symboUcally that the logarithm is the power

to which the base must be raised to equal the number.

43. The Curves y = O'. — Let a be greater than 1.

The graph of

y = O"

has the general appearance of Fig. 43

increment A, the increment in y
is

Aj/ = a^+* — a'' = a'' (a* — 1).

This increases as x increases. If

then X increases by successive

amounts h, the increments in y
form steps of increasing height.

The curve is thus concave upward
and the arc lies below its chord.

The slope of the chord AP join-

ing A (0, 1) and P (x, y) is

g''- 1

X

As Pi moves toward A the slope

of APi increases. As P2 moves toward A the slope of AP2
decreases. Furthermore the slopes of AP^ and APi approach

equality; for

1

-k =-e-^')'
and a~* approaches 1 when k approaches zero. Now if two
numbers, one always increasing, the other always decreasing,

approach equality, they approach a common limit. Call

this limit m. Then
,. a^ — 1
lim = m.
1=0 X

(43)
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This is the slope of the curve y = a" at the point where it

crosses the y-axis.

44. Definition of e. — We shall now show that there is a

number e such that

In fact, let

1=0 ^

e = a"

(44)

where m is the slope found in Art. 43. Then

^ — I ,. a™ — 1 1 ,. a"* — 1 1
lim-

bO X

1 ,. a"— = Inn
bO X

1 1 ,. a"— = — lim — m = 1.m
m

The curves y = a" all pass through the point A (0, 1).

Equation (44) expresses that when a = e the slope of the

curve at .4 is 1. If a > e the slope is greater than 1. If

a < e, the slope is less than 1.

Fig. 44.

We shall find later that

e = 2.7183

approximately. Logarithms to base e are called natural

logarithms. In this book we shall represent natural log-

arithms by the abbreviation In. Thus In u means the natural

logarithm of u.



Chap. VI. TRANSCENDENTAL FUNCTIONS 59

45. Differentials of Exponential and Logarithmic Func-

tions. —
XIX. <«e" = e" du.

XX. d!a" = a" In a du.

XXI. dhiu = —-
u

VVTT ^ !.,„
log„e du

XXII. d lOga'U' = —^
ttl

46. Proof of XIX, the Differential of e». — Let

y = e".

Then
y + Ay = e"+^",

whence
Ay = 6"+^" — e" = e" (e'^" — 1)

and

Am. Am

As Am approaches zero, by (44),

gAu _ 1

Am

approaches 1. Consequently,

-^ = e", dy = e" du.

47. Proof of XX, the Differential of a". — The identity

^ _ glna

gives a" = e"'"".

Consequently,

da" = e" '""" d (m In a) = e" " " In a dw = a" In a dit.

48. Proof of XXI and XXn, the Differential of a Log-

arithm. — Let

y = Inu.

Then e" = u.

Differentiating,

e^ dy = dM.
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Therefore

J du du

The derivative of logo u is found in a similar way.

Example 1. y = ]n (sec'' a;).

J d sec^ X 2 sec X (sec x tan x dx) „ ^ ,dy = ^— — ^^ = 2 tan x dx.
sec' x sec^ x

Ex. 2. y = 2t='°"'^

2""'"'Mn2cia;
dy = 2'»°"'»' In 2 d (tan-i x) =

1 + x^

EXERCISES

- dy 1 '-

2. y = a*^2^, g = 2 a*»°^^ln a sec^^ 2 x.

x-l x-l

e* -e"
4. 2/

=V + e-^'

5. 2/ = I" + re% ^ = »ia;"-i + n^ln n.

6. 2/ = a^2«, ^ = a^x»-i(a + a;lna).

7. 2/ = In (3 a;2 + 5 X + 1),

dx

= a-;

6l + 5

dz 3i2 + 5a; + i

8. y = ln sec^ x, -y- = "2 tan x.

9. 2/ = In (x + Vx2 — a?),

dx

dy 1

10. y = \n (sec ax + tan ax), -?- = a sec ax.
ox

11.2/ = ln(a^ + ^.), g, a-lna + 5^1n.
.

u?/ COS X
12. 3/ = In sin X + i cos" x, -;^ = —.

ax sin X

,n 1 , . X 1 cosx dy 1
13.

2/ = o *° t^'^
2 2 2sin2x dx sin^x
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J
. ^ 1 , _^ 1_ dy ^ 8

"• ^ 4*^3:2-4 a;2-4' dx a; (a;^ - 4)2'

,.1, X dy 1
15. 2/ = - m - — —

" a + Va^ — x2 dx ^j Va^ X''

16. 2/=ln(V^T3 + Vx + 2)+V(x + 3)(x + 2), J = V|-^-
17. 2/ = In (VxTa + V^), !^^ = ^

"^ 2 Vx2 + ax

18. 2/ =xtan-i--^ln(x'i+a^), ^ = tan-i--
a z ax a

19. y = ef^ (sin ax — cos ax), j^ = 2 ae<" sin ax.

20. 2/ = i tan* X— J tan* x — In cos x, -3^ — tan^ x.

21.x = aln,2. = i(.+
i}

i=i(-J)-
22.
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Sl.^From equation (44) show that

e = lim (1 + »)»•
x=o

32. If the space described by a point is s = ae' + fee"*, show that the

acceleration is equal to the space passed over.

33. Assumfng the resistance encountered by a body sinking in water

to be proportional to the velocity, the distance it descends in a time t is

g and k being constants. Show that the velocity v and acceleration a

satisfy the equation
a = g — kv.

Also show that for large values of t the velocity is approximately con-

stant.

34. Assuming the resistance of air proportional to the square of the

velocity, a body starting from rest will fall a distance

_ g ." eM + e-^N

fc2 ™\, 2 /

in a time t. Show that the velocity and acceleration satisfy the equa-
tion

kV
a = g--.

Also show that the velocity approaches a constant value.



CHAPTER VII

GEOMETRICAL APPLICATIONS

49. Tangent Line and Normal. — Let mi be the slope

of a given curve at Pi{xuyi). It is shown in analytic

geometry that a line

through (xi, yi) with slope

rui is represented by the

equation

y — yi = mi(x - xi).

This equation then rep-

resents the tangent at

(xi, 2/1) where the slope of

the curve is mi.

The line PiN perpen-

dicular to the tangent at

its point of contact is

caUed the normal to the curve at Pi. Since the slope of the

tangent is mi, the slope of a perpendicular line is and so

is the equation of the normal at (xi, yi).

Example 1. Find the equations of the tangent and normal

to the ellipse x^ + 2y^ = 9 at the point (1,2).

The slope at any point of the curve is

dy ^ _ X

dx 2y
At (1, 2) the slope is then

mi = -|.

The equation of the tangent is

2/
- 2 = -i (a; - 1),

63

Fig. 49.
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and the equation. of the normal is

2/
- 2 = 4 (a; !)•

Ex. 2. Find the equation of the tangent to x^ — y^ = a^

at the point {xi, yi).

Xi
The slope at (xi, j/i) is

is then

2/1

The equation of the tangent

2/
- 2/1 = - (a; - a;i)
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Example. Find the angles determined by the Une y = x

and the parabola y = x^.

Solving the equations simultaneously, we find that the fine

and parabola intersect at

(1, 1) and (0, 0). The slope \ y

of the line is 1. The slope at

any point of the parabola is

^ = 2x.
ax

At (1, 1) the slope of the

parabola is then 2 and the

angle from the line to the

parabola is then given by

Fig. 50b.

tan |3i

1

3'

whence
1 + 2

l3i = tan-ii = 18°26'.

At (0, 0) the slope of the parabola is and so the angle

from the fine to the parabola is given by the equation

0-1

whence

tan j32 =

ft

1+0

: -45'

= -1,

The negative sign signifies that the angle is measured in the

clockwise direction from the line to the parabola.

EXERCISES

Find the tangent and normal to each of the following curves at the

point indicated:

1. The circle x^ + y^ ='5 at (-1, 2).

2." The hyperbola xy = i&t (1, 4).

3. The parabola y' = ax a.t x = a.

4. The exponential curve y = aVa,tx = 0.

5. The sine curve 2/ = 3 sin a; at a; = ^
x^ V^

6. The ellipse -j + fe
= 1, at (xi, yi).
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7. The hyperbola x' + xy - y" - 2 x, a,t (2,0).

8. The semicubical parabola y' = x', at (— 8, 4).

9. Find the equation of the normal to the cycloid

x = a (<t>
— sin <j)), y = a {1 — cos <^)

at the point <t>
—

<t>i' Show that it passes through the point where the

rolling circle touches the z-axis.

Find the angles at which the following pairs of curves intersect:

10. 3/* = 4 a;, x' = iy. IZ. y = sin x, y = cos x.

11. x^ + y' = 9, x^ + y^— 6 X = 9. 14. y = logw x, y = hix.

12. x'' + y^ + 2x = 7, 2/2 = 4 x. 15. y = i (e^ + e^), 2/
= 2 e*.

16. Show that for all values of the constants a and 6 the curves

x^ — y^ = o'', xy = V
intersect at right angles.

17. Show that the curves

y = e°*, ^ = e"^ sin (bx + c)

are tangent at each point of intersection.

18. Show that the part of the tangent to the hyperbola xy == a' in-

tercepted between the coordinate axes is bisected at the point of tan-

gency.

19. Let the normal to the parabola y^ = ax at P cut the x-axis at N.

Show that the projection of PN on the x-axis has a constant length.

20. The focus F of the parabola j/^ = ax is the point (i a, 0). Show
that the tangent at any point P of the parabola makes equal angles

with FP and the line through P parallel to the axis.

21. The foci of the ellipse

are the points F' (- Va^ - 6^, o) and F (Va^ - b\ O) . Show that the

tangent at any point P of the ellipse makes equal angles with FP and
F'P.

I
X _^x\

22. Let P be any point on the catenary 2/ = sU^ + e "), Af the

projection of P on the x-axis, and N the projection of M on the tangent

at P. Show that MN is constant in length.

23. Show that the portion of the tangent to the tractrix

" 2 \a- vV - xV

intercepted between the y-axis and the point of tangency is constant in

length.
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24. Show that the angle between the tangent at any point P and the

Une joining P to the origin is the same at all points of the curve

In Vx' + y' = k tan-'--" X

25. A point at a constant distance along the normal from a given

curve generates a curve which is called parallel to the first. Fiad the

parametric equations of the parallel curve generated by the point at

distance h along the normal drawn inside of the ellipse

X = a cos (t>, y = b sin <t).

51. Direction of Curvature. — A curve is said to be con-

cave upward at a point P if

the part of the curve near P
lies above the tangent at P-

It is concave downward at Q
if the part near Q hes below

the tangent at Q.

At "points where -p^ispos- Fig. 51.

itive, the curve is concave upward; where -7-^ is negative, the

curve is concave downward.

For
d^y ^ d^/dy\

dx' dx \dx/

If then -T^ is positive, by Art. 13, --
, the slope, increases as x

increases and decreases as x decreases. The curve therefore

rises above the tangent on both sides of the point. If,

d^
however, -7-| is negative, the slope decreases as x increases

and increases as x decreases, and so the curve falls below the

tangent.

52. Point of Inflection. — A point like A (Fig. 52a), on

one side of which the curve is concave upward, on the other

concave downward, is called a point of inflection. It is

assumed that there is a, definite tangent at the point of in-

flection. A point like B is not called a point of inflection.
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The second derivative is positive on one side of a point of

inflection and negative on the other. Ordinary functions

change sign only by passing through zero or infinity. Hence

to fimd points of inflection we find where t^ is zero or infinite.

Fig. 52a.

If the second derivative changes sign at such a point, it is a

point of inflection. If the second derivative has the same
sign on both sides, it is not a point of inflection.

Fig. 52b. Fig. 52c.

Example 1. Examine the curve By = x* — 6x^ ior direc-

tion of curvature and points of inflection.

The second derivative is

dx'
. = 4 (^^ - 1).
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This is zero at a; = ± 1. It is positive and the curve con-

cave upward on the left of x = —1 and on the right of

a; = +1. It is negative and the curve concave downward
between x = —1 and x=+l. The second derivative

changes sign at A (— 1, — #) and B (+1, — ^), which are

therefore points of inflection (Fig. 52b).

Ex. 2. Examine the curve y = cc* for points of inflection.

In this case the second derivative is

This is zero when x is zero but is positive for all other values

of x. The second derivative does not change sign and there

is consequently no point of inflection (Fig. 52c).

Ex. 3. If a; > 0, show that sin x > a; — ^ *

Let

y = smx- x + —^-

We are to show that y > 0. Differentiation gives

-p- = cos a; — 1 + pT, , -r%= —sin a; + a;.

dx 2! dx^

When X is positive, sin x is less than x and so -r^ is positive.

Therefore -rr increases with x. Since -^ is zero when x is
da; dx

zero, -p is then positive when a; > 0, and so y increases with

X. Since y = when x = 0, y is therefore positive when
a; > 0, which was to be proved.

* If n is any positive integer ra! represents the pi:oduct of the integers

from 1 to ra. Thus

3! = l-2-3 = 6.
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EXERCISES

Examine the following curves for direction of curvature and poiats

of inflection:

1. y =a^-3x + 3.

2. 2/- = 2x' -3x2 -6z + l.

3. y = x* - 4 x3 + 6 1^ + 12 1.

4. 2/3 = X - 1.
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The projection of a chord, such as AB, is equal to the prod-

uct of its length by the cosine of the angle it makes with PQ.

On the arc AB is a tangent RS parallel to AB. Let a be the

largest angle that any tangent on the arc PQ makes with the

Fig. 53.

chord PQ. The angle between RS and PQ is not greater

than a. Consequently, the angle between AB and PQ is not

greater than a. Therefore

proj. AB = AB cos a.

Similarly,

proj. PA = PA cos a,

proj. BQ = BQ cos a.

Adding these equations, we get

PQ = {PA + AB + BQ) cos a.

It is evident that this result can be extended to a broken

line with any number of sides. As the number of sides in-

creases indefinitely, the expression in parenthesis approaches

the length of the arc PQ. Therefore

PQ = arc PQ cos a,

that is,

chord PQ

If the slope of the curve is continuous, the angle a ap-

proaches zero as Q approaches P- Hence cos a approaches

land chord PQ ,hm 57P =1.
Q=p arc PQ
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Since the chord is always less than the arc, the limit cannot

be greater than 1. Therefore, finally.

,. chord PQ ,
lim jqTT^ = 1. (53)
Q=p arc PQ

54. Differential of Arc. — Let s be the distance measured
along a curve from a fixed point A to a variable point P
Then s is a function of the coordinates of P. Let

<t> be the

angle from the positive direction of the x-axis to the tangent

PT drawn in the direction of increasing s.

FiQ. 54a. Fig. 54b.

If P moves to a neighboring position Q, the increments in

X, y, and s are

Aa; = PR, Ay = RQ, As = arc PQ.

From the figure it is seen that

rr>T>r,\ Ao; Ax As
cos (RPQ) = _ = -—,
sin (RPO) -^ - ^ Ai .

As Q approaches P, RPQ approaches and

As _ arc PQ
PQ ~ chord PQ

approaches 1. The above equations then give in the Hmit

cos^ =
dx

ds'

• ,
dy

as
(54a)
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These equations express that dx and dy are the sides of a

right triangle with hypotenuse ds extending along the tangent

(Fig. 54b). All the equations connecting dx, dy, ds, and can

be read off this triangle. One of particular importance is

ds^ = dx'' + dy\ (54b)

55. Curvature. — If an arc is everywhere concave toward

its chord, the amount it is bent can be measured by the angle

|3 between the tangents at its ends. The ratio .

j3 _ <j}' - 4> _ Atj}

arc PP' ~ As ~ As

is the average bending per unit length along PP'. The
limit as P' approaches P,

A<t> _d4
ds'

is called the curvature at P. It is greater where the curve

bends more sharply, less where it is more nearly straight.

lim .

As=o As

Fig. 55a.

In case of a circle (Fig. 55b)

Fig. 55b.

<t>
= B +

Consequently,

2' s = ad.

d<t> _ dd 1

ds ado a

'
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that is, the curvature of a circle is constant and equal to the

reciprocal of its radius.

56. Radius of Curvature. — We have just seen that the

radius of a circle is the reciprocal of its curvature. The

radius of curvature of any curve is defined as the reciprocal of

its curvature, that is,

ds
radius of curvature = p = yr- (56a)

It is the radius of the circle which has the same curvature as

the given curve at the given point.

To express p in terms of x and y we note that

<^ = tan-|.

Consequently,

^^dx
1 ldy\ dx^

Also ds = Vdx^ + dy^.

Substituting these values for ds and d<t>, we get

"
cPy

dx^

If the radical in the numerator is taken positive, p will have

the same sign as -r-^ , that is, the radius will be positive when

the curve is concave upward. If merely the numerical value

is wanted, the sign can be omitted.

By a similar proof we could show that

dy'

(56b)
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Example 1. Find the radius of curvature of the parabola

y^ = Ax at the point (4, 4).

At the point (4, 4) the derivatives have the values

dy 2-1
dx y 2'

Therefore

U + &)1\dx/
_
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same slope -r- at P. Since they have the same radius of

curvature, the second derivatives will also be equal at P.

T

Fig. 57.

The circle of curvature is thus the circle through P such that

-rr and to have the same values for the circle as for the curve
ax ax'

at P.

EXERCISES

1. The length pf arc measured from a fixed point on a certain curve

is s = x'' + X. Find the slope of the curve at x = 2.

2. Can X = cos s,y = sin s, represent a curve on which s is the length

of arc measured from a fixed point ? Can x = sec s, y = tan s, represent

such a curve?

Find the radius of curvature on each of the following curves at the

point indicated:

at (0, b). 5. r = e'.3 1+^-1
^-

o^ + 62 ~ ^' at9=2-

4. x^ + xy + y' = 3, at (1, 1). 6. r = a (1 + cos 6), at S = 0.

Find an expression for the radius of ciuvature at any point of each of

the following curves:

7. y =
l[^ + e ^)- 9. X = ly^ — ilny.

8. X = In sec y. 10. r = a sec^ \ 9.

11. Show that the radius of curvature at a point of inflection is

infinite.



Chap. VII. GEOMETRICAL APPLICATIONS 77

12. A point on the circumference of a circle rolling along the x-axia

generates the cycloid

X = a {<t>
— sm<l>), y — a (1 — cos <j>),

a being the radius of the rolling circle and ij> the angle through which it

has turned. Show that the radius of the circle of curvature is bisected

by the point where the rolling circle touches the x-axis.

13. A string held taut is unwound from a fixed circle. The end of

the string generates a curve with parametric equations

X = a cos 6 -{- aB sin 8, y = asmB — aS cos 8,

a being the radius of the circle and d the angle subtended at the center

by the arc unwound. Show that the center of curvature corresponding

to any point of this path is the point where the string is tangent to the

circle.

14. Show that the radius of curvature at any point (x, y) of the hjrpo-

cycloid x^ + y^ = o' is three times the perpendicular from the origin

to the tangent at (x, y).

1 cos X
58. Limit of It is shown in trigonometry

that

Consequently,

1 — cos a; = 2 sin" ^

2 sm^ ^ I sm -
z1 — COS X 2.x= = sm 5X X 2 X

\ 2 /

. X
sm-

As X approaches zero, approaches 1. Therefore

,. 1 — cosa;hm = 0-1 = 0.
1=0 X

59. Derivatives of Arc in Polar Coordinates. — The
angle from the outward drawn radius to the tangent drawn

in the direction of increasing s is usually represented by the

letter ^.
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Let r, B be the polar coordinates of P, and r -\- Lr,d \- M
those of Q (Fig. 59a). Draw QR perpendicular to PR and

let As = arc PQ. Then

RQ _ (r+Ar) sin ^e _.. . . sin Ag A9 _As

PQ~ PQ -^^+^^) AO ' As' PQ-

PR _ (r + At-) cos A9 - r

PQ~

sin (/2FQ) =

cos (,RPQ) =

Ar= cos (Ae) p^
- r (1 — cos Afl)

PQ
/• (1 — cos Ad) Ag As

^°'(^^)ii-^- - A0 As PQ

Fig. 59a. Fig. 59b.

As Ad approaches zero,

sin A&
lim(i2FQ)=^, lim-

A6I

, ,. l-cosA0 As ,= 1, hm
^g

^0, limp^=l.

The above equations then give in the limit,

rdd . drsm^ =
ds

COSl^
ds

(59a)

These equations show that dr and rcW are the sides of a

right triangle with hypotenuse ds and base angle ^. From
this triangle all the equations connecting dr, dd, ds, and

\l/

can be obtained. The most important of these are

tan^ = ^. d^ = dr^ + r^ dS^. (59b)
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Example. The logarithmic spiral r = ae^-

In this case, dr = aeP dd and so

tan yL = —;— = 1.
dr

The angle ^ is therefore constant and equal to 45 degrees.

The equation

, dr 1
''''l' = ds = V=2

shows that -j- is also constant and so r and s increase propor-

tionally.

EXERCISES

Find the angle i^ at the point indicated on each of the following curves:

1. The spiral r = ad, a,t 6 = ^^
o

2. The circle r = asinflate = -:
4

3. The straight line r = a sec '9, at 9 = ^•

4. The ellipse r (2 - cos 6) =k,a.td = |-

6. The lemniscate r'' = 2 a? cos 2 9, at fl = | ir.

6. Show that the curves r = oe», r = ae~« are perpendicular at each

of their points of intersection.

7. FLad the angles at which the curves r = a cos B, r = a sin 2 9

intersect.

8. Find the points on the cardioid r = a (1 — cos 6) where the tan-

gent is parallel to the initial line.

9. Let P (r, 8) be a point on the hyperbola r-^ sin 2 9 = c. Show
that the triangle formed by the radius OP, the tangent at P, and the

a;-axis is isosceles.

10. Find the slope of the curve r = e^* at the point where 9=2"

60. Angle between Two Directed Lines in Space. —
A directed line is one along which a positive direction is

assigned. This direction is usually indicated by an arrow.
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An angle between two directed lines is one along the sides

of which the arrows point away from the vertex. There are

two such angles less than 360 degrees, their sum being 360

degrees (Fig. 60). They have the same cosine.

If the lines do not intersect, the angle between them is de-

fined as that between intersecting lines respectively parallel

to the given lines.

i^&iC-M

Fig. 60. Fig. 61.

61. Direction Cosines. — It is shown in analytic geome-

try* that the angles a, fi, y between the coordinate axes and

the line P1P2 (directed from Pi to P2) satisfy the equations

cos a =
0^2 — Xl

cos /3 = -yi
cos 7

22 — Zi
(61a)

P1P2 '
^""'' PlP2 ' """ '

P1P2

These cosines are called the direction cosines of the line.

They satisfy the identity

cos^ a + cos^ /3 + cos^ 7 = 1. (61b)

If the direction cosines of two lines are cos ai, cos /3i, cos 71

and cos a^, cos j32, cos 72, the angle 6 between the lines is given

by the equation

cos 6 = cos ai cos a.2 + cos 182 cos ^2 + cos 71 cos 72. (61c)

In particular, if the lines are perpendicular, the angle B is 90

degrees and

= cos ai cos a2 + cos |8i cos 1S2 + cos 7i cos 72. (61d)

* Cf. H. B. Phillips, Analytic Geometry, Art. 64, et seq.
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62. Direction of the Tangent Line to a Curve. — The
tangent line at a point P of a curve is defined as the limiting

position PT approached by the secant

PQ as Q approaches P along the curve.

Let s be the arc of the curve measured

from some fixed point and cos a, cos j8,

cos 7 the direction cosines of the tangent

drawn in the direction of increasing s.

If X, y, z are the coordinates of P, ^'°' ^'^^'

X + Aaj, y + A?/, s + Lz, those of Q, the direction cosines of

PQare
Lx Ay Az

PQ' PQ' PQ'

As Q approaches P, these approach the direction cosines of

the tangent at P- Hence.

,. Ax ,. Ax As
cos a = lim 7^7; = am -r— 7^7,

•

Q=P PQ As PQ

On the curve, x, y, z are functions of s. Hence

,. Ax dx ,. As ,. arc , ^
lim T- — -r hm r-^ = hm -j 7 = 1.*

As ds PQ chord

Therefore

Similarly,

cos a = -7- • (62a)

a ^y d^ fan \cos^=^, cosT=^^. (62a)

These equations show that if a distance ds is measured

along the tangent, dx,dy, dz are its projections on the coordi-

nate axes (Fig. 62b). Since the square on the diagonal of a

* The proof that the limit of arc/chord is 1 was given ia Art. 53

for the case of plane curves with continuous slope. A similar proof

can be given for any curve, plane or space, that is continuous in

direction.
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rectangular parallelepiped is equal to the sum of the squares

of its three edges,

ds2 = dx^ + dif + dz\ (62b)

Fig. 62b.

Example. Find the direction cosines of the tangent to the

parabola

X = at, y = bt, z = \ cf

at the point where t = 2.

At t = 2 the differentials are

dx = a dt, dy = b dt, dz = \ctdt = c dt,

ds = ± Vdx^ + dy^ + dz^ = ± Va^ + ¥ + c^ dt.

There are two algebraic signs depending on the direction s is

measured along the curve. If we take the positive sign, the

direction cosines are

dx dy

ds Va^ + ¥ + c^' ds Va^ + fe^ + c"'

ds c

ds~ Vcf+W+~^

63. Equations of the Tangent Line. — It is shown in

analytic geometry that the equations of a straight line
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through a point Pi (xi, yi, Z\) with direction cosines propor-

tional to A, B,C are

x-^i _ y-yi _ z-zi ,„ .

The direction cosines of the tangent hne are proportional

to dx, dy, dz. If then we replace A, B, C hy numbers pro-

portional to the values of dx, dy, dz at Pi, (63) will represent

the tangent line at Pi.

Example 1. Find the equations of the tangent to the curve

X = t, y = t^, z = i^

at the point where t = 1.

The point of tangency is i = 1, a;i = 1, 2/1 = 1, Zi = 1.

At this point the differentials are

dx : dy : dz = dt .2tdt -.Sf dt = 1 :2 -.3.

The equations of the tangent line are then

X — 1 _ y — 1 _ g — 1

1 2 ~~3

Ex. 2. Find the angle between the curve Sx + 2y — 2z
= 3, 4 x^ + j/2 = 2 2^ and the line joining the origin to

(1,2,2).

The curve and line intersect at (1, 2, 2). Along the curve

y and z can be considered functions of x. The differentials

satisfj'' the equations

S dx + 2 dy - 2 dz = 0, 8xdx + 2y dy ^ izdz.

At the point of intersection these equations become

3dx + 2dy -2dz = 0, 8dx + 4:dy = 8dz.

Solving for dx and dy in terms of dz, we get

dx = 2 dz, dy = —2 dz.

Consequently,

ds = Vdx^ + */ + dz^ = S dz

and

dx 2 „ dy —2 dz 1
'=°^" = d-s=3' '°''^ = d^ = -3-' '^°'^ = ds

= 3-
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The line joining the origin and (1, 2, 2) has direction cosines

equal to 12 2
31 31 3-

The angle d between the line and curve satisfies the equation

. 2-4+2 -
cos 6 = ^ = 0.

The line and curve intersect at right angles.

EXERCISES

Find the equations of the tangent hues to the following curves at the

points indicated:

TT

1. X = sec /, y = tan t, z = at, a,tt = -•

2. X = e', 2/
= e-', z = P, at « = 1.

3. X = e' sin (, y = e' cos t, z = kt, at i = ^•

4. On the circle

a; = ocos9, ^ = acos(e + o'^)i z = acos(9 + ^7rJ

show that As is proportional to dS.

6. Find the angle at which the heUx

X — a cos e, y = aeai.6, z = kO

cuts the generators of the cylinder x' + y^ = a^ on which it lies.

6. Find the angle at which the conical heUx

I = t cos t, y = tsint, z = t

cuts the generators of the cone x' + y^ = z^ on which it lies.

7. Find the angle between the two circles cut from the sphere

3? + y^ + ^ = liby the planes x — y + z = and x + y — z = 2.



CHAPTER VIII

VELOCITY AND ACCELERATION IN A CURVED
PATH

64. Speed of a Particle. — When a particle moves along

a curve, its speed is the rate of change of distance along the

path.

Let a particle P move along the curve AB, Fig. 64. Let s

be the arc from a fixed point A to P The speed of the par-

ticle is then
ds

'"=dt-
(64)

Fig. 64. Fig. 65a.

65. Velocity of a Particle. — The velocity of a particle

at the point P in its path is defined as the vector* PT tangent

to the path at P, drawn in the direction of motion with length

equal to the speed at P. To specify the velocity we must

then give the speed and direction of inotion.

* A vector is a quantity having length and direction. The direction

is usually indicated by an arrow. Two vectors are called equal when
they extend along the same line or along parallel hnes and have the

same length and direction.

85
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The particle can be considered as moving instantaneously

in the direction of the tangent. The velocity indicates in

magnitude and direction the distance it would move in a

unit of time if the speed and direc-

tion of motion did not change.

Example. A wheel 4 ft. in di-

ameter rotates at the rate of 500

revolutions per minute. Find the

speed and velocity of a point on its

rim.

Let OA be a fixed line through the

center of the wheel and s the distance along the wheel from

OA to a moving point P. Then

s = 2dit.

The speed of P is

^ = 2^=2 (500) 2 X = 2000 x ft./min.
at at

Its velocity is 2000 t ft./min. in the direction of the tangent

at P. The speeds of all points on the rim are the same.

Their velocities differ in direction.

66. Components of Velocity in a Plane. — To specify a

velocity in a plane it is customary to give its components,

that is, its projections on the coordinate axes.

If PT is the velocity at P (Fig. 66), the a;-component is

FQ = Prcos</.= ^cos<^ = ^^ = ^,

and the ^/-component is

^m r>m , rfs . , ds dv dv

The components are thus the rates of change of the coordinates.

Since

pya = PQ2 -I- QT\



Chap. VIII. VELOCITY AND ACCELERATION 87

the speed is expressed in terms of the components by the

equation

(dsY ^ (dxV (dyf
[dtj [dt) '^[dtj

FiQ. 66. Fig. 67.

67. Components in Space. — If a particle is moving

along a space curve, the projections of its velocity on the

three coordinate axes are called components.

Thus, if PT (Fig. 67) represents the velocity of a point, its

components are

PQ = PT cos a = -77 T- = -77 .

dt ds dt

Since PT? = PQ^ + QR^ + RT^ the speed and compo-
nents are connected by the equation

(dsV ^ /dx\ (dyV (dzV

\dt) \dt) '^[dtj '^[dtj
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68. Notation. — In this book we shall indicate a vector

with given components by placing the components in brack-

ets. Thus to indicate that a velocity has an a>component

equal to 3 and a ^/-component equal to —2, we shall simply

say that the velocity is [3, —2]. Similarly, a vector in space

with a;-component a, y-component b, and 2-component c will

be represented by the symbol [a, b, c].

Example 1. Neglecting the resistance of the air a bullet

fired with a velocity of 1000 ft. per second at an angle of 30

degrees with the horizontal plane will move a horizontal

distance

a; = 500 « Vs

and a vertical distance

y = 500 <- 16.1 «2

in t seconds. Find its velocity and speed at the end of 10

seconds.

The components of velocity are

^ = 500 V3, § = 500 - 32.2 t.

at at

At the end of 10 seconds the velocity is then

7= [500 V3, 178]

and the speed is

j^
=V (500 V3)' + (178)2 = 384 ft./sec.

Ex. 2. A point on the thread of a screw which is turned

into a fixed nut describes a helix with equations

X — r cos d, y = rsind, z = k9,

being the angle through which the screw has turned, r the

radius, and k the pitch of the screw. Find the velocity and

speed of the point.
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The components of velocity are

dx . „dd dy „dd dz , dd

at dt dt dt dt dt

d8
Since -37 is the angular velocity &> with which the screw is

rotating, the velocity of the moving point is

V = [—na sin 6, rco cos 9, kia]

and its speed is

ds— = y/rW sin2 d + r^oj^ cos^ 6 + fcW = co Vr^ + k^,

which is constant.

X^
m,vy

^^

Fig. 69a. Fig. 69b.

69. Composition of Velocities. — By the sum of two
velocities F] and V2 is meant the velocity Vi + F2 whose

components are obtained by adding corresponding compo-

nents of Vi and V2. Similarly, the difference V2 — Vi is the

velocity whose components are obtained by subtracting the

components of Vi from the corresponding ones of Vi.

Thus, if

Fi = [ai, 61], Vi = [02, 62],

Fi + Fa = [ai + 02, h + h], F2 — Fi = [02— ai, 62 — &i].

If Vi and F2 extend from the same point (Fig. 69a),

Fi + F2 is one diagonal of the parallelogram with Fi and

F2 as adjacent sides and F2 — Fi is the other. In this case

Fg — Vi extends from the end of Vi to the end of F2.
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By the product mV of a vector by a number is meant a

vector m times as long as V and extending in the same direc-

tion if m is positive but the opposite direction if m is negative.

It is evident from Fig. 69b that the components of mV are

m times those of V.

V 1
The quotient— can be considered as a product — V. Its

components are obtained by dividing those of V by m.

70. Acceleration. — The acceleration of a particle mov-
ing along a curved path is the rate of change of its velocity

AV dV
dt

'A = lim . .

M=0 At

In this equation AF is a vector

AV
and -jrr is obtained by divid-

ing the components of AF
by A*.

Let the particle move from

the point P where the velocity

is V to an adjacent point P'

where the velocity is 7 + AF.

The components of velocity will change from
dx dy

It' dt
to

da; .dx

di'^ di'

dy, .dy
dt'^ dt

Consequently,

Subtraction and division by At give

^^'b%^t]
AV
At

A dx
^1

At ' At

As At approaches zero, the last equation approaches

, dV [d'x d^yl ,,„ ,
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In the same way the acceleration of a particle moving in

space is found to be

(70b)

Equations 70a and 70b express that the components of the

acceleration of a moving particle are the second derivatives of

its coordinates with respect to

the time.

Example^ A particle

moves with a constant

speed V around a circle of

radius r. Find its velocity

and acceleration at each

point of the path.

Let e = AOP. The co-

ordinates of P are

a; = r cos 0,

The velocity of P is

^dd .del

ds
Since s = rd, -y. = v = r -j- .

dt dt

'df ^""
dtj

The velocity can therefore be

written

V = [— «;sin5, «;cose].

Since v is constant, the acceleration is

r .dd . .del

Replacing 37 by - , this reduces to

COS0, sm0 = -[ — cosS, — sin9].

Now [—cos 9, —sin 9] is a vector of unit length directed
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along PO toward the center. Hence the acceleration of P is

directed toward the center of the circle and has a magnitude

equal to — •

EXERCISES

1. A pointP moves with constant speed v along the straight line y = a.

Find the speed with which the line joining P to the origin rotates.

2. A rod of length a shdes with its ends in the x- and j/-axes. If the

end in the s-axis moves with constant speed v, find the velocity and speed

of the middle point of the rod.

3. A wheel of radius o rotates about its center with angular speed u

while the center moves along the x-axis with velocity v. Find the velocity

and speed of a point on the perimeter of the wheel.

4. Two particles Pi (xi, yi) and Pi (xa, 2/2) move in such a way that

xi = 1+ 2 <, 2/1 = 2 - 3 «2,

% = 3 + 2<2, 2/2= -4<'.

Find the two velocities and show that they are always parallel.

6. Two particles Pi ( xi, yi, zi) and Pi (xa, y^, Zj) move in such a way
that

xi = a cos e, yi = a cos (5 + 4 jt), Si = o cos {0 + % ir),

X2 = o sin 9, 2/2 = o sin (9 + J tt), 32 = a sin (9 + f ir).

Fiud the two velocities and show that they are always at right angles.

6. A man can row 3 miles per hour and walk 4. He wishes to cross

a river and arrive at a point 6 miles further up the river. If the river is

If miles wide and the current flows 2 miles per hour, find the course he

shall take to reach his destination in the least time.

7. Neglecting the resistance of the air a projectile fired with velocity

[a, b, c] moves in t seconds to a position

X = at, y = bt, z = ct — \ gf'.

Find its speed, velocity, and acceleration.

8. A particle moves along the parabola 3? = ay in such a way that

yr is constant. Show that its acceleration is constant.
at

9. When a wheel rolls along a straight line, a point on its circum-

ference describes a cycloid with parametric equations

X = a (<^ — sin 0), y = a {1 — cos <l>),

a being the radius of the wheel and <t) the angle through which it has>

rotated. Find the speed, velocity, and acceleration of the moving point.
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10. Find the acceleration of a particle moving with constant speed v

along the cardioid r = o (1 — cos 9).

11. If a string is held taut while it is unwound from a fixed circle, its

end describes the curve

X — a cos 9 -{ a 8 Bin d, y = a sin d — a ff cos 9,

9 being the angle subtended at the center by the arc unwound. Show
that the end moves at each instant with the same velocity it would have

if the straight part of the string rotated with angular velocity -w about

the point where it meets the fixed circle.

12. A piece of mechanism consists of a rod rotating in a plane with

constant angular velocity w about one end and a ring sUding along the

rod with constant speed v. (1) If when t = the ring is at the center

of rotation, find its position, velocity, and acceleration as functions of the

time. (2) Find the velocity and acceleration immediately after / = U,

if at that instant the rod ceases to rotate but the ring continues sliding

with unchanged speed along the rod. (3) Find the velocity and acceler-

ation immediately after t = ii ii at that instant the ring ceases sliding

but the rod continues rotating. (4) How are the three velocities re-

lated? How are the three accelerations related?

13. Two rods AB, BC are hinged at B and lie in a plane. A is

fixed, AB rotates with angular speed w about A, and BC rotates with

angular speed 2 a about B. (1) If when t = 0, C lies on AB produced,

find the path, velocity, and acceleration of C. (2) Find the velocities

and accelerations immediately after i = ii if at that instant one of the

rotations ceases. (3) How are the actual velocity and acceleration

related to these partial velocities and accelerations?

14. A hoop of radius a rolls with angular velocity on along a horizon-

tal line, while an insect crawls along the rim with speed oua. If when
t = the insect is at the bottom of the hoop, find its path, velocity, and
acceleration. The motion of the insect results from three simultaneous

actions, the advance of the center of the hoop with speed aun, the rota-

tion of the hoop about its center with angular speed wi, and the crawl

of the insect advancing its radius with angular speed £02. Find the three

velocities and accelerations which result if at the time t = h two of these

actions cease, the third continuing unchanged. How are the actual

velocity and acceleration related to these partial velocities and accelera-

tions?



CHAPTER IX

ROLLE'S THEOREM AND INDETERMINATE
FORMS

71. Rolle's Theorem. — If /' ix) is continuous, there is at

least one real root off (x) = between each pair of real roots

off (x) = 0.

To show this consider

the curve

y =f(x).

Let / (x) be zero at

X = a and x = b. Be-

tween a and b there

must be one or more
points P at maximumFig. 71a.

distance from the a;-axis.

horizontal and so

dy

dx

That this theorem may not hold if /' {x) is discontinuous

is shown in Figs. 71b and 71c. In both cases the curve

\t such a point the tangent is

= f (x) = 0.

Fig. 71b. Fig. 71c.

cro.sses the x-axis at a and b but there is no intermediate

point where the slope is zero.

94
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Example. Show that the equation

a;S + 3a;-6 =

cannot have more than one real root.

Let

f{x)=x' + 3x-&.
Then

fix) =3x' + S = 3(x2+l).

Since /' (x) does not vanish for any real value of x, / (x) =0
cannot have more than one real root; for if there were two

there would be a root of /' (x) = between them.

72. Indeterminate Forms. — The expressions

^, -, O-oo, 00-00, r, 0°, 00°
00

are called indeterminate forms. No definite values can be

assigned to them.

If when X = a a, function / (x) assumes an indeterminate

form, there may however be a definite limit

lim/(x).

In such cases this limit is usually taken as the value of the

function at x = a.

For example, when x = the function

2x0
X

~0"

It is evident, however, that

lim— = lim (2) = 2.
x=0 X

This example shows that an indeterminate form can often be

made definite by an algebraic change of form.

73. The Forms -r and — . —We shall now show that, if
U 00

f (x)
for a particular value of the variable a fraction . , assumes

the form t; or — , numerator and denominator can be replaced
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by their derivatives without changing the value of the limit

approached by the fraction as x approaches a.

1. Let /' (x) and F' (x) be continuous between a and b.

JffW = 0, F (a) = 0, and F (b) is not zero, there is a number

Xi between a and b such thai

f(b)_f(x^)
Fib) F'{x,)

To show this let|^ = R. Then
t (p)

(73a)

/ (6) - RF (6) = 0.

Consider the function

/ ix) - RF (a;).

This function vanishes when x = h. Since / (a) = 0,

F (a) = 0, it also vanishes when x = a. By Rolle's Theorem
there is then a value Xi between a and b such that

/' (xi) - RF' (xi) = 0.

Consequently,

fib) jf^rM
F{b) "- F'ixO'

which was to be proved.

2. Let/' (x) and F' (x) be continuous near a. Iff (a) =
and F (a) = 0, then

For, if we replace b by x, (73a) becomes

fix) ^f'ixQ
Fix) F'ix,)'

xi being between a and x. Since xi approaches a as x ap-

proaches a,

iS F ix) '^a F' (Xi) Ta F' (X)

3. In the neighborhood of x = a, let /' (x) and F' (x) be
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continuous at all points except x = a. If J {x) and F (x)

approach infinity as x approaches a,

,• /(^) , fix)
^^a F (X) x=a F' (X)

To show this let c be near a and on the same side as x.

Since / (x) — / (c) and F {x) — F (c) are zero when x = c,

by Theorem 1,

1
He)

IM = /W-/(c) = /M /W
F' (xi) F (x) - F (c) i^ (x) F_(^

'

F(x)

where Xi is between x and c. As x approaches a, / (x) and

F (x) increase indefinitely. The quantities / (c)// (x) -and

F {c)/F (x) approach zero. The right side of this equation

therefore approaches

x=a F (x)

Since Xi is between c and a, by taking c sufficiently near to

a the left side of the equation can be made to approach

™ F' (x)

Since the two sides are always equal, we therefore conclude

that

limm = lim^^-
F (x) .r. F' (x)

Example 1. Find the value approached by as x

approaches zero.

Since the numerator and denominator are zero when x = 0,

we can apply Theorem 2 and so get

,. sinx ,. cosx
lim = lim—— = 1.

Ex. 2. Find the value of Um-^ r^- •

xi^ (x — x)2
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When X = IT the numerator and denominator are both

zero. Hence

,. l + cosx ,. (—sin a;)

Iml 7 TV = Iim -^^r-j r = -•

i=, (tt - xy x=T —2 (tt — X)

Since this is indeterminate we apply the method a second

time and so obtain

,. sin a; ,. cos a; 1

X=T 2 (TT — X) x=„ —2 2,

The value required is therefore \.

Ex. 3. Find the value approached by — as x ap-
tan X

proaches ^-

TT

When X approaches -^ the numerator and denominator of

this fraction approach oo. Therefore, by Theorem 3,

Iim tan 3 a; ,. 3sec^3a; ,. 3cos^a;
TT

—. = lim 5 = hm —5-;r— •

a:=2 tan X sec^ x cos^ 3 x

When X is replaced by ^ the last expression takes the form 7:
•

Therefore

,. 3 cos^ a; ,. 6 cos x sin xhm —TTTT- = hm
cos^ 3 a; 6 cos 3 x sin 3 x

eos^ X — sin^ x 1
lim

3 (cos2 3 X - sin2 3 x) 3

74. The Forms • 00 and 00 — 00. — By transforming

e expression t<

For example,

the expression to a fraction it will take the form tt or —
00

xlnx
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has the form • oo when a; = 0. It can, however, be

written

, In a;

a; In a; = -j— i

X

which has the form—
00

The expression

sec X — tan x

IT

has the form oo — oo when x = ^- It can, however, be

written

1 sin a; 1 — sin x
sec x — tan x = =

,

cos X cos x cos x

which becomes ^ when x = -•

75. The Forms 0°, 1"=^, oo°. — The logarithm of the given

function has the form • oo. From the limit of the log-

arithm the limit of the function can be determined.
1

Example. Find the limit of (1 + xY as x approaches

zero.

1

Let y = {1+ xf-

Then

, 1 1 /I I N
In (1 + x)

In 2/ =-ln(l + a;) = '-

When X is zero this last expression becomes ^ . Therefore

,. ln(l + a;) ,. 1bm—^^ '- = hm = 1.
1=0 X 1 -|- a;

The limit of lay being 1, the hmit of y is e.
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EXERCISES

1. Show by RoUe's Theorem that the equation

X* - 4x - 1 =

cannot have more than two real roots.

Determine the values of the following limits:

„ T • ^' ~ 1 <iT T • sec 3 X — a;
2. Lim-n; r- 17. Lim

-

3. Lim

ii xi" — 1 ^ sec X — X

x" - 1
^= «

.^^-1'
18. Limi-t*2iL2x.

hi)4. Lim
^".""^^

- -^|sec
^0 smo;

6. Lim^ - =^=0
19. Lim X cot x.

6. Lim

x=a X — o, 20. Lim tan x cos 3 x.

tan X — X 1=

-

1=5=0 X — sm X

7. Lim
j:=?=0 cosx — 1

8. Lim „
x=3 X — 6

„ T • In cos X
9. Lim

x^cosx 21. Lim (x + a) Inf 1 +2).

22. Lim (x - 3) cot (ttx).

a;=3
, , „, 22. Lim (x - 3) cot (ttx).
In (x - 2) 1=3

=0 a;
" 1

24. Limx^a^.
sin^x x=o

10. Lim, -.,
1-2 (a; - 2)2

., - T 1 + cos X — sin X
11. Lun

=^^- ^(s-i^ij-
COS X (2 sin x — 1) 26. Lim (cot x — In x).

to t:^ logioCsmx -sina) 27. Limftanx-^ ^^^-^r-l"• ,l™lo!r,„rtanx-tan«V .-t L smx-sm'^xj
i=5=a logio (tan X — tan a)

2

13. Li^
6sinx-6x+x3

_ 2g_ j^j^ ^_
x=0 X' x=0

14. Lup
Sec'-^ -2tan.» 29. Lim (sin x)*™^

1 + cos 4
2

1

15. Limi5^. 30. Lim (1+ ax^.
x=0 cot X x=0

Inx 1

16. Lim • 31. Lim (x™-— a"") 'i *.
a:=a) a; a;=QO



CHAPTER X

SERIES AND APPROXIMATIONS

76. Mean Value Theorem. — If f {x) and /' (x) are con-

tinuousfrom X = atox = h, there is a value Xi between a and b

such that m^ = /' (-0. (76)

To show this consider the curve y =/(x). Since f (a)

and / (6) are the ordinates at x = a and x = b,

/(&)-/(«) ^ gjQ Qf ^j^Qj.^ j^g
b — a

On the arc A B let Pi be a point at maximum distance from

Fig. 76.

the chord. The tangent at Pi will be parallel to the chord

and so its slope/' (xi) will equal that of the chord. Therefore

i»l^) = ;,(,,,

which was to be proved.

Replacing 6 by x and solving for / (x) , equation (76) becomes

fix) =f{a) + (x-a)f'{xi),
101
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Xi being between o and x. This is a special case of a more

general theorem which we shall now prove.

77. Taylor's Theorem. — 7/ / (x) and all its derivatives

used are continuousfrom a to x, there is a value Xi between a and x

such that

f (x) =f(a) + ix- a)f' (a) + i^^^/" (a)

To prove this let

<t>{x)=f(x)-f{a)-(x-a)f'(a)

_ jx - ay .^s _ . . . _ (X - a)"-i

2! ^
^''^ (n- 1)! ^ *

^

It is easily seen that

<t> (a) = 0, 0' (a) = 0, (t)" (a) = 0,

. . . r-' (a) = 0, r (x) = /" (x).

When X = a the function

4>{x)

(x — a)"

therefore assumes the form zz. By Art. 73 there is then a^

value 3i between a and x such that

0(a;) _ 4,'(zi)

(x — a)" n {zi — a)"~^

This new expression becomes ^ when z, = a. There is con-

sequently a value Zi between Zi and a (and so between x and a)

such that

<^^(zi) _ ct>" (z,)

n (zi — a)"-i 71 (n — 1) (Z2 — a)""^

A continuation of this argument gives finally

(t>(x) ^ <P^(Zn) ^ /" (Zn)
^

(x — a)" n\ n\
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Zn being between x and a. If Xx = Zn we then have

Equating this to the original value of ^ (x) and solving for

/ (x), we get

/W=/(a) + (x-a)/'(a)

+ ^>(«)+---+^"/"(^0.

which was to be proved.

Example. Prove

(x - ly {x - ly {x - ly

2 "^ 3 4x1*
In X = (x - 1) - ^ , , ^ ^

,

where xi is between 1 and x.

When X = 1 the values of In x and its derivatives are

/(x)=ln(x),
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is called the remainder. If this is small, an approximate

value of the function is

/W -/(o) + (l-a)f(o)

the error in the approximation being equal to the remainder.

To compute/ (a;) by this formula, we must know the values

of/ (a), /' (o), etc. We must then assign a value to a such that

/(«). /' («)i ete., are knovm. Furthermore, a should be as

close as possible to the value x at which / (x) is wanted. For,

the smaller x — a, the fewer terms {x — a)^, (x — a)', etc.,

need be computed to give a required approximation.

Example 1. Find tan 46° to four decimals.

The value closest to 46° for which tan x and its derivatives

are known is 45°. Therefore we let a = -7 •

4

/(a;)=tana;,
^(l)'"

^'

f'{x)=eec^x,
•^'(i)=2.

/" (x) = 2 sec2 x tan x, f" (^= 4,

/'" (x) = 2 sec* x + 4: sec^ x tan^ x.

Using these values in Taylor's formula, we get

and

tan46° = l + 2(^) + 2(^)^=1.0355

approximately. Since xi is between 45° and 46°, /'" (x{)

does not differ much from

/'" (46°) = 8 + 8 = 16.
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The error in the above approximation is thus very nearly

f(lioJ<3|o)-3<4oko
= 0-««««25. '

It is therefore correct to 4 decimals.

Ex. 2. Find the value of e to four decimals.

The only value of x for which e^ and its derivatives are

known is a; = 0. We therefore let a be zero.

/ {x) = e-, /' (x) = e, f'{x)=e-, , /" {x) = e^,

/(O) = 1, /' (0) = 1, /" (0) = 1, ,
/" (xi) = e\

By Taylor's Theorem,

,
x^

,
x^

,
,

a;"-^ ,
a;"e^i

Letting x = 1, this becomes

11 1 e'^

6 = 1 + 1 + 21 + 3!
+

•
• •

+(;r^i)! + ^r

In particular, if n = 2,

e = 2 + i e^'.

Since xi is between and 1, e is then between 2^ and 2 +
J e, and therefore between 2^ and 4. To get a better ap-

proximation let n = 9. Then

e = l + l + ^ + ^+--- +3^=2.7183

approximately, the error being

9!^ 9-, ^ 9!
< -00002.

The value 2.7183 is therefore correct to four decimals.

EXERCISES

Determine the values of the following functions correct to four

decimals:

1. sin 5°- 5. sec (10°).

2. cos 32°. 6. ln(T%).

3. cot 43°. V. Ve.

4. tan 58°. 8. tan"' (^j).

9. Given In 3 = 1.0986, In 5 = 1.6094, find In 17.
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79. Taylor's and Maclaurin's Series. — As n increases

indefinitely, the remainder in Taylor's formula

n

often approaches zero. In that case

/(x)=lim[/(a) + (a;-a)/'(a)+ • • • + ''"^/""Ha)]-

This is usually written

f{x)=f (a) + {x- a)f' (a) +^^—^ f" (a)

,
(^ - a)l^„,

(^) + . . .
^

3!

the dots at the end signifying the limit of the sum as the

number of terms is indefinitely increased. Such an infinite

sum is called an infinite series. This one is called Taylor's

Series.

In particular, if a = 0, Taylor's Series becomes

f{x)=fiO)+xf'{0)+^f"{0)+f^f"iO)+ • • .

This is called Maclaurin's Series.

Example. Show that cos x is represented by the series

x'' , x^ x^
,cosx=l-2| + 4;-gj+ • • • .

The series given contains powers of x. This happens when

a = 0, that is, when Taylor's Series reduces to Maclaurin's.

/ (x) = cos X, f (0) = 1,

f'{x) = -smx, /'(0)=0,

f"ix) = -cosx, /"(0) = -l,
/'" {x) = sm x, f" (0) = 0,

/"" (x) = cos X, f"" (0) = 1.

These values give

cosa;=l-2] + 4j- • ±-,/"(xi).
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The nth. derivative of cos x is =tcos x or ±sin x, depending

on whether n is even or odd. Since sin x and cos x are never

greater than 1, /„ (xi) is not greater than 1. Furthermore
/viTC I* 'y* '>• f

n\^l'2'3' ' ' 'n

can be made as small as you please by taking n sufficiently

large. Hence the remainder approaches zero and so

cosa; = l-2; + 4|-g;+ • • •
.

which was to be proved.

EXERCISES

1.

„ 1 1 / 7r\ 1 / ttV
, 1 ( irV

,

3. 2^ = l+xln2 + (^^ + Mi2)!+. ..

ryl '1-3 /r5 T'G X T'

,. ,, 2a;3 4s* 4x5, 8 a;'
5. e-cosx = l+x-^-^--gj- + -^+ ...

6. (o + x)" = a" + na"-'x + ^'^gT^ '*''"^^' + • • •
, if |x|*< |o|.

7. V-x = 2 +— i-^+i^j^ ,if|x-4|<l.

8. lnx = ln3+^-^^=^' + ^^=3?l! ,iflx-3|<l.

9. ln(x + 5)=ln6+^^-i|=^+M! ,if|x-l|<l.

80. Convergence and Divergence of Series.— An in-

finite series is said to converge if the sum of the first n terms

approaches a limit as n increases indefinitely. If this sum
does not approach a limit, the series is said to diverge.

The series for sin x and cos x converge for all values of x.

The geometrical series

a -\- ar -{- ar'^ -\- ai^ \- ar^ -{ • •

* The symbol |x| is used to represent the numerical value of x with-

out its algebraic sign. Thus,
|
— 3

|
=

| 3 1 =3.
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converges when r is numerically less than 1. For the sum of

the first n terms is

1 — r"
iS„ = a + ar + ar^ + • • • + ar"~i = a -.

\ — r

If r is numerically less than 1, r" approaches zero and /S„

approaches

1 — r

as n increases indefinitely.

The series

1-1+1-1+1-1+ •••

is divergent, for the sum oscillates between and 1 and does

not approach a limit. The geometrical series

1 + 2 + 4 + 8+16+ •••

diverges because the sum increases indefinitely and so does

not approach a limit.

81. Tests for Convergence. — The convergence of a

series can often be determined from the problem in which it

occurs. Thus the series

_ E! _i_ e! _ ^ _l_
2!"'"4! e!"*"

converges because the sum of n terms approaches cos x as n

increases indefinitely.

The terms near the beginning of a series (if they are all

finite) have no influence on the convergence or divergence of

the series. This is determined by terms indefinitely far out

in the series.

82. General Test. — For the series

Ul + ll2 + U3+ • + Un+ •

to converge it is necessary and sufficient that the,sum of terms

beyond m„ approach zero as n increases indefinitely.

For, if the series converges, the sum of n terms must ap-

proach a Umit and so the sum of terms beyond the nth must

approach zero.
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83. Comparison Test. — A series is convergent if beyond

a certain point its terms are in numerical value respectively less

than those of a convergent series whose terms are all positive.

For, if a series converges, the sum of terms beyond the nth

will approach zero as n increases indefinitely. If then another

series has lesser corresponding terms, their sum will approach

zero and the series will converge.

84. Ratio Test.— // the ratio -^ of consecutive terms'
Un '

approaches a limit r asn increases indefinitely, the series

U1+U2 + U3+ • + Un + Un+1 + • • •

is convergent if r is numerically less than 1 and divergent if r is

numerically greater than 1.

Since the limit is r, by taking n sufficiently large the ratio

of consecutive terms can be made as nearly r as we please.

If r < 1, let n be a fixed number between r and 1. We can

take n so large that the ratio of consecutive terms is less than

ri. Then

Un+l < nUn, U„+2 < riUn+1 < T-^Un, etC.

Beyond Un the terms of the given series are therefore less than

those of the geometrical progression

Un + r-iUn + r^n + ' • •

which converges since ?'i is numerically less than 1. Con-
sequently the given series converges.

If, however, r is greater than 1, the terms of the series must
ultimately increase. The terms do not then approach zero

and their sum cannot approach a limit.

Example. Find for what values of x the series

a; + 2a;^ + 3a^ + 4a^+ • • •

converges.

The ratio of consecutive terms is

Mn+i ^ (w + 1) a:"+^

= (-S
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The limit of this ratio is

r = lim ( 1 H

—

] x = x.
n=oo \ nj

The series will converge if x is numerically less than 1.

85. Power Series. — A series of powers of {x — a) of

the form

P {x) = ao + ai (a; — o) + 02 (x — a)^ + as (x — a)' + • •
,

where a, ao, ai, Oa, etc., are constants, is called a power series.

If a power series converges when x = b, it will converge for

all values of x nearer to a than b is, that is, such that

|x — a| < |& — a\.

In fact, if the series converges when x = b, each term of

ao + ai (6 — a) + 02 (& — ay + 03 (& — o)' + • • •

will be less than a maximum value M^ that is,

|o„ (b - a)"| < M.

Consequently,

The terms of the series

Oo + Oi (x — a) + 02 (x — a)2 + 03 (x — o)' + • • •

are then respectively less than those of the geometrical series

in which the ratio is

\b-a\

If then \x — a\ < \b — a\, the progression and consequently

the given series will converge.

// a power series diverges when x = &, it will diverge for all

values of x further from a than b is, that is, such that

|x ^ o| > |6 — a\.
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For it could not converge beyond b, since by the proof just

given it would then converge at b.

This theorem shows in certain cases why a Taylor's Series

is not convergent. Take, for example, the series

^2 /wo ^4
ln(l + x)=x-^ +^-^+ • • • .

As X approaches —1, In (1 + x) approaches infinity. Since

a convergent series cannot have an infinite value, we should

expect the series to diverge when x = —1. It must then

diverge when a; is at a distance greater than 1 from a = 0.

The series in fact converges between a; = — 1 and x = 1 and

diverges for values of x numerically greater than 1.

86. Operations with Power Series. — It is shown in

more advanced treatises that convergent series can be added,

subtracted, multiplied and divided like poljoiomials. In

case of division, however, the resulting series will not usually

converge beyond a point where the denominator is zero.

Example. Express tan x as.a series in powers of x.

We could use Maclaurin's series with / (x) = tan x. It is

easier, however, to expand sin x and cos x and divide the one

by the other to get tan x. Thus

a:' x^

sin a; ^ ~ 6 ^ 120
~

' ' '

, a;^ 2 a;^
tana;= = z -j =a;+ir +-t?-+ • • .

cos a; 1 _ ^ I ^ _ 3 15j

2
"^

24

EXERCISES
1. Show that

and that the series converges when |a;| < 1.

2. By expanding cos 2 x, show that

1 — cos 2x _ a;2 „„ a;*
, „, a?

sin'' X = 2 21-2' 4! + "' 61-2 2! 4! ' 6!

Prove that the series converges for all values of x.
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3. Show that

(l+e^)2 = l+2e* + e=* = 4 + 4a; + 3a^+ix'+fx*+---

and that the series converges for all values of x.

4. Given / (x) = sin"' x, show that

/' (X) = 1— = (1 - x^)-\.
VI — x^

Expand this by the binomial theorem and determine /" {x), etc., by

differentiating the result. Hence show that

,
1 a^

,
1 .3 a? , 1 3 5x'

and that the series converges when |a;| < 1.

6. By a method similar to that used in Ex. 4, show that

*i^3 -lO ^7
U.n-^x = x-^+j-j+---

and that the series converges when \x\ < 1.

6. Prove

cosx 2 24

For what values of x do you think the series converges?



CHAPTER XI

PARTIAL DIFFERENTIATION

87. Functions of Two or More Variables. — A quantity

u is called a function of two independent variables x and y,

u =f{x, y),

if u is determined when arbitrary values (or values arbitrary

within certain limits) are assigned to x and y.

For example,

M = Vl - a;2 - 2/2

is a function of x and y. If u is to be real, x and y must be so

chosen that x^ + y^ is not greater than 1. Within that

limit, however, x and y can be chosen independently and a

value of u will then be determined.

In a similar way we define a function of three or more in-

dependent variables. An illustration of a function of vari-

ables that are not independent is furnished by the area of a

triangle. It is a function of the sides a, b, c and angles A, B,

C of the triangle, but is not a function of these six quantities

considered as independent variables; for, if values not be-

longing to the same triangle are given to them, no triangle

and consequently no area will be determined.

The increment of a function of several variables is its in-

crease when all the variables change. Thus, if

u =f(x, y),

u+ Au =f(x + ^x,y + Ay)

and so

Au=fix + Ax,y + Ay) - f {x, y).

A function is called continuous if its increment approaches

zero when all the increments of the variables approach zero.

113
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88. Partial Derivatives. — Let

u =f{x, y)

be a function of two independent variables x and y. If we
keep y constant, w is a function of x. The derivative of this

function with respect to x is called the partial derivative of u
with respect to x and is denoted by

g or fAx,y).

Similarly, if we differentiate with respect to y with x con-

stant, we get the partial derivative with respect to y denoted

by

^ or fy(x,y).

For example, if

u = x^ + xy — y^,

then
du ^

,

du „ '_=2x + j/, -^-x-2y.

Likewise, if m is a function of any number of independent

variables, the partial derivative with respect to one of them
is obtained by differentiating with the others constant.

89. Higher Derivatives. — The first partial derivatives

are functions of the variables. By differentiating these

functions partially, we get higher partial derivatives.

For example, the derivatives of — with respect to x and y

are

d ldu\ dhi d ldu\ dhitdu\ ^dhi d^ tdu\ _ dhb

\dx) ~ dx^ ' dy \dx) ~ dy dxdx \dx/ dx^ dy \dxj dydx

Similarly,

d_ /du\ ^ d^u d^ /du\ ^ 6^
dx \dy/ dx dy ' dy \dy/ dy^

It can be shown that

dhc _ dhi

dxdy dydx'
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if both derivatives are continuous, that is, -partial derivatives

are independent of the order in which the differentiations are

performed*

Example, u = x^y + xy^.

— = 2 xy + y", — = x^ + 2 xy,

af|
= ^(^^ + 2^^)=2- + 2,,g=A(,.+ 2.,)=2..

90. Dependent Variables. — It often happens that some
of the variables, are functions of others. F6r example, let

u = x^ + y^ -\- f
and let 3 be a function of x and y. When y is constant, z will

be a function of x and the partial derivative of u with respect

to X will be

— = 2 X -\- 2 z—
dx dx

Similarly, the partial derivative with respect.to y with x con-

stant is

P=2y + 2zp.
dy " dy

If, however, we consider z constant, the partial derivatives

are

du du
-^ = 2x, — = 2 2/.
dx dy

The value of a partial derivative thus depends on what quantities

are kept constant during the differentiation.

The quantities kept constant are sometimes indicated by
subscripts. Thus, in the above example

* For a proof see Wilson, Advanced Calculiis,^ 50.
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It will usually be clear from the context what independent

variables u is considered a function of, Then -r— will repre-
ox

sent the derivative with all those variables except x constant.

Example. If a is a side and A the opposite angle of a right

'^^ triangle with hypotenuse c, find (— j •

From the triangle it is seen that

P a = c sin A.

Differentiating with A constant, we get

da

dc
= sin A,

which is the value required.

91. Geometrical Representation. — Let z = f (x, y) be

the equation of a surface. The points with constant y-

coordinate form the curve AB (Fig. 91a) in which the plane

y = constant intersects the surface. In this plane z is the

vertical and x the horizontal coordinate. Consequently,

dz

dx

is the slope of the curve AB at P.

Similarly, the locus of points with given x is the curve CD
and

dy

is the slope of this curve at P-

Example. Find the lowest point on the paraboloid

3 = a;2 + 2/2-2x-4j/ + 6.

At the lowest point, the curves AB and CD (Fig. 91b) will

have horizontal tangents. Hence

f = 2a;-2 = 0, p-=2y-i = 0.
dx dy
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Consequently, x = 1, y = 2. These values substituted in

the equation of the surface give 2 = 1. The point required

is then (1, 2, 1). That this is really the lowest point is shown

by the graph.

Fig. 91a. Fig. 91b.

EXERCISES

In each of the following exercises show that the partial derivatives

satisfy the equation given:

1. u
x^ + i

x + y

2. z = (.x+a}(.y + b),

4. u =\n {x^ -\-xy -\- y'^), x —- + y — = 2.
ox dy

du
, du

""Tx-^^Vy-



18
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By the mean value theorem, Art. 76,

}{x + ^x,y-\- Ay) =f{x,y + Ay) + Axf^ (xi, y + Ay),

xi lying between x and x + Ax. Similarly

/ {x, y + Ay) =f {x, y) + Ayfy (.x,.yi),

yi being between y and y + Ay. Using these values in (92a),

we get

Aw = Ace/, (xi, y + Ay)+ Ayfy (x, yi). (92b)

As Ax and Ay approach zero, Xi approaches x and yi ap-

proaches y. If fx (x, y) and fy {x, y) are continuous,

/x (xi, y + Ay) = fa: (x, 2/) + «i = ^ + «i'

du
fy (X, yi) = fy (X, 2/) + €2 = — + €2,

€i and e2 approaching zero as Ax and Ay approach zero.

These values substituted in (92b) give

Au = -^ Ax +~ Ay + eiAx + e2 Ay. (92c)

The quantity
du . , du .~ Ax + — Ay
dx dy

is called the principal part of Am. It differs from Am by an

amount ei Ax + 62 Ay. As Ax and Ay approach zero, ei and e^

approach zero and so this difference becomes an indefinitely

small fraction of the larger of the increments Aa; and Ay.

We express this by saying the principal part differs from Am
by an infinitesimal of higller order than Aa; and Ay (Art. 9).

When Aa; and Ay are sufficiently small this principal part then

gives a satisfactory approximation for Am.

Analogous results can be obtained for any number of in-

dependent variables. For example, if there are three inde-

pendent variables x, y, z, the principal part of Am is

du . , du . , du .-^Ax+—Ay + — Az.
dx dy dz

In each case, if the partial derivatives are continuous, the
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principal part differs from Am by an amount which becomes

indefinitely small in comparison with the largest of the in-

crements of the independent variables as those increments

all approach zero.

Example. Find the change in the volume of a cylinder

when its length increases from 6 ft. to 6 ft. 1 in. and its diam-

eter decreases from 2 ft. to 23 in.

Since the volume is ?; = irr%, the exact change is

At; = TT (1 - 1^)2 (6 + tV) - T P . 6 = -0.413 x cu. ft. ^

The principal part of this increment is

|Ar + |A/. = 2../.(-l) + ..^(l)=-0.417.cuft.

93. Total Differential. ^ If m is a function of two inde-

pendent variables x and y, the total differential of u is the

principal part of Aw, that is,

'- = fx^'+fy^y- (93^)

This definition applies to any function of x and y. The
particular values u = x and u = y give

dx = Ax, dy = Ay, (93b)

that is, the differentials of the independent variables are equal

to their increments.

Combining (93a) and (93b), we get

<^w = ^ «^a; + ^ dy. (93c)

We shall show later (Art. 97) that this equation is valid even

if X and y are not the independent variables.

The quantities

J 5m , J du .,

dxU = — dx, dyU = —- dy

are called partial differentials. Equation (93c) expresses

that the total differential of a function is equal to the sum of the

partial differentials obtained by letting the variables change one

at a time.
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Similar results can be obtained for functions of any number
of variables. For instance, if w is a function of three inde-

pendent variables x, y, z,

dw = T- Aa; + — At/ + — A2.
dx dy dz

The particular values u = x, u = y,u = z give

dx = Ax, dy = A.y, dz = A2.

The previous equation can then be written

du = -:— dx +^— dy + ^r dz (93d)
dx dy dz

and in this form it can be proved valid even when x, y, z are

not the independent variables.

Example 1. Find the total differential of the function

u = x^y + xy'^.

By equation (93c)

, du , , du -,

du = -:r- dx -j- T— dy
dx dy

= i2xy + y^) dx + (a;^ + 2 xy) dy.

Ex. 2. Find the error in the volume of a rectangular box

due to small errors in its three edges.

Let the edges be x, y, z. The volume is then

V = xyz.

The error in v, due to small errors Aa;, Aj/, Az in x, y, z, is Aw.

If the increments are sufficiently small, this will be approxi-

mately
dv = yzdx + xz dy + xy dz.

Dividing by v, we get

dv _ yz dx + xz dy -\- xy dz

V xyz

dx dy
,
dz

= — H •xyz
dx

Now— expresses the error dx as a fraction or percentage of x.
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The equation just obtained expresses that the percentage

error in the volume is equal to the sum of the percentage

errors in the edges. If, for example, the error in each edge

is not more than one per cent, the error in the volume is not

more than three per cent.

94. Calculation of Di£ferentials. — In proving the formu-

las of differentiation it was assumed that u, v, etc., were

functions of a single variable. It is easy to show that the

same formulas are valid when those quantities are functions

of two or more variables and du, dv, etc., are their total

differentials.

Take, for example, the differential of uv. By (93c) the

result- is

d (uv) = -r- (uv) du +-T- (uv) dv = vdu -\- u dv,
du dv

which is the formula IV of Art. 17.

Example, u = y^ + ze".

Differentiating term by term, we get

du — y^" dx + ^ dy -{ ze'" dy + e" dz.

We obtain the same result by using (93d) ; for that formula

gives

du = — dx +— dy + — dz = y€!''dx+ (d'' + ze") dy + e" dz.

95. Partial Derivatives as Ratios of Differentials. —
The equation

dxU = -— dx
dx

du
shows that the partial derivative -r- is the ratio of two dif-

dx

ferentials dxU and dx. Now d^u is the value of du when the

same quantities are kept constant that are constant in the

calculation of -r-- Therefore, the partial derivative v- is the
dx ' f Q^
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value to which -r- reduces when du and dx are determined with
dx

the same quantities constant that are constant in the calculation

. du

"^dx-

Example. Given u = x^ + y^ + z', v = xyz, find f^ j
•

Differentiating the two equations with v and z constant,

we get

du = 2xdx + 2y dy, = yz dx + xz dy.

Eliminating dy,

du =2xdx-2'^ dx = 2 f
^' ~ ^'

) dx.
x \ X /

Under the given conditions the ratio of du to dx is then

du ^ 2 (x^ - y")

dx x

Since v and z were kept constant, this ratio represents (—
j ;

that is,

\dx/v
(-

EXERCISES

1. One side of a right triangle increases from 5 to 5.2 while the other

decreases from 12 to 11.75. Find the increment of the hypotenuse and

its principal part.

2. A closed box, 12 in. long, 8 in. wide, and 6 in. deep, is made of

material J inch thick. Find approximately the volume of material

used.

3. Two sides and the included angle of a triangle are 6 = 20, c = 30,

and A = 45°. By using the formula

a2 = 62 + c2 - 2 6c cos A,

find approximately the change in a when 6 increases 1 unit, c decreases

i unit, and A increases 1 degree.

4. The period of a simple pendulum is

r = 2xv^-

Find the error in T due to small errors in I and g.
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6. If (/ is computed by the formula,

s = J gfi,

find the error in g due to small errors in s and t.

6. The area of a triangle is determined by the formula

K = i ab sin C.

Find the error in K due to small errors in a,b,C.

Find the total differentials of the following functions:

7. xf^. 9. -+^ + --
" y z X

8. xysm(x + y). 10. tan"' - + tan"' -•
X y

11. The pressure, volume, and temperature of a perfect gas are con-

nected by the equation pv = kt, k being constant. Find dp in terms of

dv and dt.

12. If X, y are rectangular and r, 6 polar coordinates of the same

point, show that

xdy - ydx =r^de, dx^ + dy^ = dr'^ + r" dff^.

13. lix = u-v, y =v? + ««, find (^ j •

14. llu = xy + yz + zx, x^ -\- z^ —1 yz, find (—
J

•

16. 11 yz = tix + tfi, vx = uy + z', find
f
—

)

\OZJu,x

16. A variable triangle with sides a, b, c and opposite angles A, B, C
is inscribed in a fixed circle. Show that

da db , dc _ _

cos A cos B cos C

96. Derivative of a Function of Several Variables. —
Let u = f {x,y) and let x and y be functions of two variables

s and t. When t changes to i + Ai, a; and y will change to

a; + Ax and y + Aj/. The resulting increment in u will be'

Am = — Aa; + — Aj/ + €1 Ax + €2 Ay.

Consequently,

Am
'Kt

As Ai approaches zero, Ax and Ly will approach zero and ^o

bM _duLx du^ Ax Ay
K ~ dx Ai'^ dy At'^ ^^Ai'^ ^~Ai
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ei and £2 will approach zero. Taking the limit of both sides,

du _ du dx du dy , ,

It ~ dx dt^ dy dt'
^^^>

dx
If a; or 2/ is a function of t only, the partial derivative -r-.

at

du dx du
or T7 is replaced by a total derivative -77 or -^ . If both x

dt dt at

and y are functions of i, w is a function of t with total deriva-

tive

du _du dx du dy
(q(\w\

dt
~ dx dt'^ dy dt

'

^ ^

Likewise, if w is a function of three variables x, y, z, that

depend on t,

du _ du dx du dy du dz , ,

dt
~ dx 'di ^ dy ^ '^

'dz Tt' * ^^

As before, if a variable is a function of t only, its partial de-

rivative is replaced by a total one. Similar results hold for

any number of variables.

The term
du dx

dx dt

is the result of differentiating u with respect to t, leaving all

the variables in u except x constant. Equations (96a) and

(96c) express that if u is a function of several variable quanti-

ties, — can be obtained by differentiating with respect to t as if

only one of those quantities were variable at a time and adding

the results.

du
Example 1. Given y = x", find -^-

The function x^ can be considered a function of two vari-

ables, the lower x and the upper x. If the upper x is held

constant and the lower allowed to vary, the derivative (as in

case of oj") is

X • cc^~i = a?.
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If the lower x is held constant while the upper varies, the

derivative (as in case of a?') is

iU'lnx.

The actual derivative of y is then the sum

-^ = x^ + a?' In a;.

ax

Ex. 2. Given u = f {x,y, z), y and z being functions of a;,

~ , du
find ^-•

ax

By equation (96c) the result is

du _ du . du dy du dz

dx dx dy dx dz dx

In this equation there are two derivatives of u with respect

to X. If y and z are replaced by their values in terms of x, u

will be a function of x only. The derivative of that function

is J- . If 2/ and z are replaced by constants, u will be a secopd

function of x. Its derivative is -r- •

dx

Ex. 3. Given u = f {x,y, z), z being a function of x and y.

Find the partial derivative of u with respect to x.

It is understood that y is to be constant in this partial

differentiation. Equation (96c) then gives

du _ du du dz

dx dx dz dx

In this equation appear two partial derivatives of u with

respect to x. If z is replaced by its value in terms of x and y,

u will be expressed as a function of x and y only. Its partial

derivative is the one on the left side of the equation. If z is

kept constant, u is again a function of x and y. Its partial

derivative appears on the right side of the equation. We
must not of course use the same symbol for both of these

derivatives. A way to avoid the confusion is to use the
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letter/ instead of u on the right side of the equation. It then

becomes

dx dx dz dx

It is understood that / {x, y, z) is a definite function of x, y, z

and that ^ is the derivative obtained with all the variables
dx

but X constant.

97. Change of Variable. — If w is a function of x and y
we have said that the equation

, 5m , ,
du Idu == —- dx + ^- ay

dx dy

is true whether x and y are the independent variables or not.

To show this let s and t be the independent variables and x

and y functions of them. Then, by definition,

, du , ,
du ,,

du = -r- as + -rr dt.
dS Of

Since m is a function of x and j/"which are functions of s and t,

by equation (96a),

du _ du dx du dy du _ du dx du dy

ds
~ dx ds dy ds ' Tt ^ dx 'di dy 'di\

Consequently,

, /du dx , du dy\ , ,

/du dx , du dy\ ,.

'^''=[di-d-s+d^-d-sr+[d^^+dimr
du /dx , ,

dx ,\ . du /dy , ,
dy , A du , ,

du ,

=
d-x[d-s'^ + -dt'^V + d^[ds^'+mV =

d-x'^'' + d-y'^y'

which was to be proved.

A similar proof can be given in case of three or more

variables.

98. Implicit Functions. — If two or more variables are

connected by an equation, a differential relation can be ob-

tained by equating the total differentials of the two sides of

the equation.
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Example 1. / (x, y) = 0.

In this case

d-f{x,y)=^dx + ^dy = d-0 = 0.\

Consequently,
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rivative of this function is found by eliminating dy and solving

dz
for the ratio

dx'
The result is

dz

dx

dfidf2

dy dx

dfidh
dx dy

dfidf2

dz dy

dfidf,

dy dz

99. Directional Derivative. — Let u = f {x, y). At each

point P (x, y) in the aitz-plane, u has a definite value. If we
move away from P in any definite direction PQ, x and y will

Fig. 99.

be functions of the distance moved. The derivative of u
with respect to s is

du du dx
,
du dy du

, ,
du . ,

ds dx ds dy ds dx dy

This is called the derivative of u in the direction PQ. The

partial derivatives — and — are special values of — which

result when PQ is drawn in the direction of OX or OY.
Similarly, if m = / (x, y, z),

du du dx , dudy
,
du dz du

,
du „ , du

•r- = T-j- + T--f + T-j- = ^COSa + -T-COS|8 + -r-COS7
ds dx ds dy ds ds as dx dy dz

is the rate of change of u with respect to s as we move along a

line with direction cosines cos a, cos |3, cos y. The partial
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derivatives of u are the values to which -r- reduces when s is
ds

measured in the direction of a coordinate axis.

Example. Find the derivative of a;^ + y^ in the direction

<t>
= 45° at the point (1, 2).

The result is

^(x^ + yi) =2x^+2y^ = 2xcos<t> + 2ysm<l>

=2~ +4~= 3V2.
V2 V2

100. Exact Differentials. — If P and Q are functions of

two independent variables x and y,

Pdx + Qdy

may or may not be the total differential of a function w of a;

and y. If it is the total differential of such a function,

P dx + Q dy = du = -T- dx + -r- dy.
ax ay

Since dx and dy
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Similarly, if

Pdx + Qdy + Rdz

is the differential of a function u of x, y, z,

dPdQ dQ_dR dRdP ,.„„,.

^-'di' 'di-^' 'di'dz'
^^""^^

and conversely.

Example 1. Show that

(x2 + 2 xy) dx + (x^ + 2/2) dy

is an exact differential.

In this case

The two partial derivatives being equal, the expression is

exact.

Ex. 2. In thermodynamics it is shown that

dU = TdS -pdv,

U being the internal energy, T the absolute temperature, S
the entropy, p the pressure, and v the volume of a homogene-

ous substance. Any two of these five quantities can be

assigned independently and the others are then determined.

Show that
/an ^ /dv\

\dp/s \dSjj,

The result to be proved expresses that

TdS + vdp

is an exact differential. That such is the case is shown by
replacing T dS by its value dU + pdv. We thus get

TdS + vdp = dU + pdv + vdp = d(U + pv).

EXERCISES

1. If M = / (x, y), y ==
(t> (x), find ^•

2. If M = / (x, y, z), z =<t> (x), find f ^j
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3. If u = / (a;, y, z), z =
<t> (x, y), y = <{' (x), find ~

4.

and

If « = / {x, y), y =
<l> (x, r), r = ^ (x, s), find

[J^j
,

\J^j^'

\ax),

5. If/ fe y,z)=Q,z = F {X, y), find^-

6. If F (a;, y, z) = 0, show that

Sx ay Bz^ _
dy dz dx~

7. If w = a;/ (z), z = -, show that x— + y— = u.

8. If u =/ (r, s), r = a;+<rf, s =y+ bt, show that -rr = a -r

—

\-b -r--
ot ax dy

9. If z = / (x + ay), show that t" = « ^"

10. If u = f (x, y), X == T cos B, y = r sin 9, show that

Urj "*"
\r Be] \ax) '^\ay)

11. The position of a pair of rectangular axes moving in a plane is

determined by the coordinates h, k of the moving origin and the angle

between the moving x-axis and a fixed one. A variable point P has co-

ordinates x', y' with respect to the moving axes and x, y with respect to

the fixed ones. Then

X =f {x', y', h, k, <t>), y = F (x', y', h, k, 4>).

Find the velocity of P. Show that it is the sum of two parts, one repre-

senting the velocity the point would have if it were rigidly connected

with the moving axes, the other representing its velocity with respect

to those axes conceived as fixed.

12. Find the directional derivatives of the rectangular coordinates

X, y and the polar coordinates r, 9 of a point in a plane. Show that they

are identical with the derivatives with respect to s given in Arts. 54 and

59.

13. Find the derivative of x'' — y'' 'va. the direction ij> = 30° at the

point (3, 4).

14. At a distance r in space the potential due to an electric charge e

is y = - . Find its directional derivative,
r

15. Show that the derivative of xy along the normal at any point of

the curve 3? — y^ = c^ ia zero.
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16. Given u = f {x,y), show that

if Si and sj are measured along perpendicular directions.

Determine which of the following expressions are exact differentials:

17. y dx — X dy.

18. (2x + y)dx + {x -2y) dy.

19. exdx-\- eydy + (x + y) ezdz.

20. yz dx — xzdy + y'^dz.

21. Under the conditions of Ex. 2, page 131, show that

\dT)p Kdph' {dTJv \av]T

22. In case of a perfect gas, pw = hT. Using this and the equation

dU = TdS -p dv,

show that

1^ = 0.
dp

Since U is always a function of p and T, this last equation expresses

that J7 is a function of T only.

101. Direction of the Normal at a Poiat of a Surface. —
Let the equation of a surface be

F (x, y, z) = 0.

Differentiation gives

dF, .dF, ,dF, _
-T-dx +^-dy + -r-dz = 0.
dx dy dz

(101a)

Let PN be the line

through P (x, y, z) with

direction cosines propor-

tional to

dF^SF^dF
dx' dy ' dz

If P moves along a curve

on the surface, the direc-

tion cosines of its tangent

PT are proportional to

dx : dy : dz.
Fig. 101.

Equation (101a) expresses that PN and PT are perpendicu-

lar to each other (Art. 61). Consequently PN is perpendicu-
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lar to all the tangent lines through P. This is expressed by

saying PN is the normal to the surface at P. We conclude

that the normal to the surface F {x, y,z) = at P {x, y, z) has

direction cosines proportional to

f:f:f- (101)
dx dy dz ^ ^

102. Equations of the Normal at Pi (asi, yi, z^.'— Let A,

B, C be proportional to the direction cosines of the normal

to a surface at Pi {xi, yi, zi). The equations of the normal

are (Art. 63)
X - xi _ y-yi _ z - z, ..„„,

^4~~~B~~ C
^^^^>

103. Equation of the Tangent Plane at Pi (xi, yi, «i).
—

All the tangent lines at Pi on the surface are perpendicular

Fig. 103.

to the normal at that point. All these lines therefore lie in a

plane perpendicular to the normal, called the tangent plane

at Pi.

It is shown in analytical geometry that ii A, B, C are pro-

portional ,to the direction cosines of the normal to a plane

passing through (xi, yi, Zi), the equation of the plane is

A(x-xO+B(y- yi) + C (z - z^) = 0* (103)

* See Phillips, Analytic Geometry, Art. 68.



Chap. XI. PARTIAL DIFFERENTIATION 135

It A, B, C are proportional to the direction cosines of the

normal to a surface at Pi, this is then the equation of the

tangent plane at Pi.

Example. Find the equations of the normal line and tan-

gent plane at the point (1, —1, 2) of the ellipsoid

a;2 + 2 2/2 + 3 z2 = 3 a; + 12.

The equation given is equivalent to

a;2 + 2 1/2 + 3 ^2 - 3 x - 12 = 0.

The direction cosines of its normal are proportional to the

partial derivatives

2x - 3 -.iy :6z.

At the point (1, —1,' 2), these are proportional to

A :B :C = -1 : -4 : 12 = 1 : 4 : -12.

The equations of the normal are

' X - I _ y + 1 _ g - 2

1
~ 4 ~ - 12

The equation of the tangent plane is

X - 1 + 4 (?/ + 1) - 12 (2 - 2) = 0.

EXERCISES

Find the equations of the normal and tangent plane to each of the

following surfaces at the point indicated:

1. Sphere, t' + y^ + z'' = 9, at (1, 2, 2).

2. Cylinder, x^ + xy + y' = 7, at (2, -3, 3).

3. Cone, z' = x' + y', at (3, 4, 5).

4. Hyperbolic paraboloid, sj/ = 3 z — 4, at (5, 1, 3).

5. Elliptic paraboloid, x = 22/^ + 3 z^, at (5, 1, 1).

6. Find the locus of points on the cylinder

{x + zy + {y-z)' = i

where the normal is parallel to the iiz-plane.

7. Show that the normal at any point P (x, y, z) of the surface

j^2 _]_ 22 = 4 X makes equal angles with the x-axis and the line joining

PandA (1,0,0).

8. Show that the normal to the spheroid

9 "^25

at P {x, y, z) determines equal angles with' the lines joining P with

A' (0, -4, 0) and A (0, 4, 0).
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104. Maxima and Minima of Functions of Several

Variables. — A maximum value of a function m is a value

greater than any given by neighboring values of the variables.

In passing from a maximum to a neighboring value, the func-

tion decreases, that is

Am < 0. (104a)

A minimum value is a value less than any given by neigh-

boring values of the variables. In passing from a minimum
to a neighboring value

Aw > 0. (104b)

If the condition (104a) or (104b) is satisfied for all small

changes of the variables, it must be satisfied when a single

variable changes. If then all the independent variables but

X are kept constant, u must be a maximum or minimum in x.

rilj

If -r- is continuous, by Art. 31,
ox

g=o. (104c)

Therefore, if the first partial derivatives of u with respect to the

independent variables are continuous, those derivatives must be

zero when u is a maximum or minimum,.

When the partial derivatives are zero, the total differential

is zero. For example, if x and y are the independent vari-

ables,

du =^ dx +^ dy = dx + dy = 0. (104d)
ax ay

Therefore, if the first partial derivatives are continuous, the

total differential of u is zero when u is either a maximum or a

minimum.

To find the maximum and minimum values of a function,

we equate its differential or the partial derivatives with re-

spect to the independent variables to zero and solve the

resulting equations. It is usually possible to decide from

the problem whether a value thus found is a maximum,
minimum, or neither.
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Example 1. Show that the maximum rectangular parallele-

piped with a given area of surface is a cube.

Let X, y, z be the edges of the parallelopiped. If V is the

volume and A the area of its surface

V = xyz, A = 2 xy -\- 2 xz -\- 2 yz.

Two of the variables x, y, z are independent. Let them be

X, y. Then

_ A — 2xy
^~2{x + y)'

Therefore

y ^xy{A-2 xy)

2{x + y)

dV^f FA -2x^ -4 xyl

dz 2L {x + yy J-"'
dV^^ VA -2y^ -Axy '\

dy~ 2l {x + yy J
" "

The values x = 0, y = cannot give maxima. Hence

A - 2x^ - 4xy = 0, A - 2y^ - Axy = 0.

Solving these equations simultaneously with

A = 2 xy + 2 xz + 2 yz,

we get

x^y = z =V-g-

We know there is a maximum. Since the equations give

only one solution it must be the maximum.
Ex. 2. Find the point in the plane

x + 2y + iz= 14

nearest to the origin.

The distance from any point {x, y, z) of the plane to the

origin is

D = Vx^ + y^ + z^.



138 DIFFERENTIAL CALCULUS Chap. XI.

If this is a minimum
,

j^ ^ xdx + ydy + zdz ^ ^
Va;2 + 2/2 + 2^

that is,

xdx + ydy + zdz = 0. (104e)

From the equation of the plane we get

dx + 2dy + Zdz = 0. (104f)

The only equation connecting x, y, z is that of the plane.

Consequently, dx, dy, dz can have any values satisfying this

last equation. If x, y, z are so chosen that D is a minimum
(104e) must be satisfied by all of these values. If two linear

equations have the same solutions, one is a multiple of the

other. Corresponding coefficients are proportional. The

coefficients of dx, dy, dz in (104e) are x, y, z. Those in (104f)

are 1, 2, 3. Hence

X _y _z
1
~2~3'

Solving these simultaneously with the equation of the plane,

we get X = 1, y = 2, z = 3. There is a minimum. Since

we get only one solution, it is the minimum.

EXERCISES (

1. An open rectangular box is to have a given capacity. Find the

dimensions of the box requiring the least material.

2. A tent having the form of a cylinder surmounted by a cone is to

contain a given volume. Find its dimensions if the canvas required is a

minimum.
3. When an electric current of strength / flows through a wire of

resistance R the heat produced is proportional to I^R. Two terminals

are connected by three wires of resistances Ri, Ri, Ra respectively. A
given current flowing between the terminals will divide between the

wires in such a way that the heat produced is a minimum. Show that

the currents Ii, h, h in the three wires will satisfy the equations

4. A particle attracted toward each of three'points A, B, C with a
force proportional to the distance will be in equilibrium when the sum
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of the squares of the distances from the points is least. Find the posi-

tion of equilibrium.

5. Show that the triangle of greatest area with a given perimeter is

equilateral.

6. Two adjacent sides of a room are plane mirrors. A ray of light

starting at P strikes one of the mirrors at Q, is reflected to a point B on

the second mirror, and is there reflected to S. If P and S are in the

same horizontal pline find the positions of Q and B so that the path

PQBS may be as short as possible.

7. A table has four legs attached to the top at the comers Ai, Ai,

Ai, Ai of a square. A weight W placed upon the table at a point of the

diagonal AiAs, two-thirds of the way from Ai to As, will cause the legs

to shorten the amoxmts Si, Si, Sj, St, while the weight itself sinks a dis-

tance h. The increase in potential energy due to the contraction of a

leg is fcs^, where k is constant and s the contraction. The decrease in

potential energy due to the sinking of the weight is Wh. The whole

system will settle to a position such that the potential energy is a mini-

mum. Assuming that the top of the table remains plane, find the

ratios of Si, Si, Ss, St,



SUPPLEMENTARY EXERCISES

CHAPTER III

Find the difierentials of the following functions:

2 ^_ 7 (2 a; + 1) (2 a; + 7)'

b^ax?+h (2a; + 5)»

, 2 Vaa:' + hx „ (a + 2)' (a; + 4)'

6a; (a; + l)na: + 3)«'

^
2o3; + 6 _ _ (2x''-l) V^HH;

Vax' + 6i + c a^

. (ax + 6)'H^ fa(ai+&)'H-i ,„, ,5=1.
5- aHn + 2)

~ aUn + 1)

'

^0. a;(a;" + 7i) »

Find -y in each of the following cases:

11. 2a;='-4xj/ + 3j/2 = 6x-42/ + 18.

12. x' + Zx'y = y\

13. 2 = 32/'' + 22/'.

14. (x2 + 2/2)2 = 2o2(x'-2/'').

15. x = « + r^, y = 2t- ^t-V " {t-iy

16. X = /:;--— ' y =Vl+ t2
^ Vl - <2

17. X = < 02 + o2)* 2/ = < «2 + a2)*.

18. X = z' + 2z, 2 = 2/2 + 2^.

19. x" + 2^ = aS yz = V.

20. The volume elasticity of a &uid iae = —v-^. If a gas expands

according to Boyle's law, pv = constant, show that e = p.

21. When a gas expands without receiving or giving out heat, the

pressure, volume, and temperature satisfy the equations

pv = BT, pv" = C,

B, n, and C being constants. Find ^ and ^- ^

140
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22. If « is the volume of a spherical segment of altitude h, show that

yr is equal to the area of the circle forming the plane face of the segment.

23. If a polynomial equation

/W =

has two roots equal to r, / (x) has {x — r)^ as a factor, that is,

/ (x) = (x - ryf, (x),

where /i (x) is a polynomial in x. Hence show that r is a root of

/' W = 0,

where/' (x) is the derivative of/ (x).

Show by the method of Ex. 23 that each of the following equations

has a double root and find it:

24. x3 - 3x2 + 4 = 0.

25. x= - x^ - 5 X - 3 = 0.

26. 4x'-8x'i-3x + 9 =0.

27. 4x4 - 12x3+ a;2 + i2x + 4 =0.

Find '^ and j^ in each of the following eases.

28. y = x Va? - x\ 31. ax + by + c = 0.

3.2 32. X = 2 + 3(, 2/ = 4-5<.

^ ^^ 33. x = ——T y = 7:ri'
30. xj/ = a2. ' +

1

* +

1

34. If, = x^findgandg.

35. Given x^ — y' = 1, verify that

dx^
~

d!/2 \,dx/

36. If « is a positive integer, show that

d"
-r^ x" = constant.
dx"

37. If M and v are functions of x, show that

d^ , , d% , .d'u dv , -dhi cPv . . du dh)
,

d^
^(w) = ^-« + 4^-^^ +6^.^,+4^.^ + «^.

Compare this with the binomial expansion for (4t + w)*.

38. If / (x) = (x — rYfi (x), where /i (x) is a polsmomial, show that

/'W=/"«=0.
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CHAPTER IV

39. A particle moves along a straight line the distance

s = it>-21P + 3&t + l

feet in t seconds. Find its velocity and acceleration. When is the

particle moving forward? When backward? When is the velocity

increasing? When decreasing?

40. Two trains start from different points and move along the same

track in the same direction. If the train in front moves a distance 6 1'

in t hours and the rear one 12 P, how fast will they be approaching or

separating at the end of one hour? At the end of two hours? When
wUl they be closest together?

41. If s = Vt, show that the acceleration is negative and propor-

tional to the cube of the velocity.

42. The velocity of a particle moving along a straight line is

V = 2P -3t.

Find its acceleration when / = 2.

k
43. li tf' = -, where k is constant, find the acceleration.

s

44. Two wheels, diameters 3 and 5 ft., are connected by a belt.

What is the ratio of their angular velocities and which is greater?

What is the ratio of their angular accelerations?

45. Find the angular velocity of the earth about its axis assuming

that there are 365j days in a year.

46. A wheel roUs.down an inclined plane, its center moving the

distance s = 5P in t seconds. Show that the acceleration of the

wheel about its axis is constant.

47. An amount of money is drawing interest at 6 per cent. If the

interest is immediately added to the principal, what is the rate of

change of the principal?

48. If water flows from a conical funnel at a rate proportional to

the square root of the depth, at what rate does the depth change?

49. A kite is 300 ft. high and there are 300 ft. (rf cord out. If the

kite moves horizontally at the rate of 5 nules an hour directly away
from the person fls^ng it, how fast is the cord being paid out?

50. A particle moves along the parabola

100 y = 16a;2

in such a way that its abscissa changes at the rate of lO ft./ sec. Find

the velocity and acceleration of its projection on the j/-axis.

51. The side of an equilateral triangle is increasing at the rate a!

10 ft. per minute and its area at the rate of 100 sq. ft. per minute.

How large is the triangle?
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CHAPTER V
52. The velocity of waves of length X in deep water is proportional to

\^
X a

a'^X

when o is a constant. Show that the velocity ia a minimum when
X = a.

53. The sum of the surfaces of a sphere and cube is given. Show
that the sum of the volumes is least when the diameter of the sphere

equals the edge of the cube.

54. A box is to be made out of a piece of cardboard, 6 inches square,

by cutting equal squares from the comers and turning up the sides.

Find the dimensions of the largest box that can be made in this way.

55. A gutter of trapezoidal section is made by joining 3 pieces of

material each 4 inches wide, the middle one being horizontal. How
wide should the gutter be at the top to have the maximum capacity?

56. A gutter of rectangular section is to be made by bending into

shape a strip of copper. Show that the capacity of the gutter will be

greatest if its width is twice its depth.

57. If the top and bottom margins of a printed page are each of

width a, the side margins of width 6, and the text covers an area c,

what should be the dimensions of the page to use the least paper?

58. Find the dimensions of the largest cone that can be inscribed

in a sphere of radius a.

59. Find the dimensions of the smallest cone that can contain a

sphere of radius a.

60. To reduce the friction of a liquid against the walls of a channel,

the channel should be so designed that the area of wetted surface is as

small as possible. Show that the best form for an open rectangular

channel with given cross section is that in which the width equals

twice the depth.

61. Find the dimensions of the best trapezoidal channel, the banks

making an angle B with the vertical.

62. Find the least area of canvas that can be used to make a conical

tent of 1000 cu. ft. capacity.

63. Find the maximum capacity of a conical tent made of 100 sq. ft.

of canvas.

64. Find the height of a light above the center of a table of radius a,

so as best to illuminate a point at the edge of the table; assuming that

the illumination varies inversely as the square of the distance from the

Ught and directly as the sine of the angle between the rays and the

surface of the table.
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65. A weight of 100 lbs., hanging 2 ft. from one end of a lever, is to

be raised by an upward force appUed at the other end. If the lever

weighs 3 lbs. to the foot, find its length so that the force may be a
minimiiTn .

66. A vertical telegraph pole at a bend in the line is to be supported

from tipping over by a stay 40 ft. long fastened to the pole and to a

stake in the ground. How far from the pole should the stake be

driven to make the tension in the stay as small as possible?

67. The lower comer of a leaf of a book is folded over so as just to

reach the inner edge of the page. If the width of the page is 6 inches,

find the width of the part folded over when the length of the crease is

a minimum.

68. If the cost of fuel for running a train is proportional to the

square of the speed and $10 per hour for a speed of 12 mi./hr., and

the fixed charges on $90 per hour, find the most economical speed.

69. If the cost of fuel for running a steamboat is proportional to

the cube of the speed and $10 per hour for a speed of 10 mi./hr., and

the fixed charges are $14 per hour, find the most economical speed

against a current of 2 mi./hr.

CHAPTER VI

Differentiate the following functions:

sin X 76. sec^ x — tatf x.
70.

71.

72.

X --..?> X
. „ 77. sm'-secs"
sm X A

1 — cos 9
78. tan:

1 + cos 9 1 — X

sin 9 __ 2 tan x

73. sin ax cos ax. ' 1 — tan' x

^.^0 80. 5 sec' 9 - 7 setf 9.
74. cot K — CSC ;;• ., „ .

2 2 81. sec I esc I — 2 cot x.

75. tan 2x — cot

2

x.

Differentiate both sides of each of the following equations and show
that the resulting derivatives are equal.

82. sec' X + csc'a; = sec' x esc' x.

83. sin 2 X = 2 sin a; cos x.

84. sin 3 a; = 3 sins — 4 sin' X.

85. sin (x + o) = sin s cos a + cos x sin a.

86. sec'x = 1 + tan'x.

87. ainx + maa == 2mn^ (x + a) cos i (x — a).
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88. cos a — cos s = 2 sin 5 (a; + o) sin |(s — a).

Find —- and -3-^ in each of the following cases:

89. X = a cos^ e,

90. X = a cos* e,

91. X = ta.ne — e,

92. X = sec2e,

93. X = sec e,

y = a sin* fl.

2/ = a sitf 8.

y = cos 9.

y = tan* 9.

2/ = tan 8.

94. a; = esc 8 — cot 8, y = csc8 + cot 0.

Differentiate the following functions:

95. sin-i

96. cos-'

97. tan-i

2
98. :7|tan- ,

2x + l

V3

99. cos-i

100. CSC-'

101. sec-i

Vx^ + 1

V5
2a;

-1'

109. e^.

110. V^.

111. (Vi)^

112. 5thxt.

1

113. 7^.

114. a^lna;.

115. In sin" x.

116. hihi.-!;.

U7. .{1=^.

102. a csc-i - + Va* - a;«-

103. cot-^a;-
l+a:^

104. Vl — X sin-i .r - Vi-

105. sec->^i4 + siii"'^^-
a; — 1 a; + 1

106. sm 1 r—

^

+a cos a;

10'

108.

118.

,- 1
2 cos-i X + 2 VT

Vx* — a* — a sec"

X*-

itan-ii+ ihi(a2 + x2)-

119. e-*' cos (a + 6/).

120. hi(a + Va' + x*).

121. (x + yin(x +y-x-L

122. ln^^ + ° + ^^^zJ.
vx + a ~ V X — a

123. tan-i i (e^ + e-"^).

124. hi(Vx + ^^1^2).

125. (x + l)hi(x* + 2x + 5)+|tan-i-^^.

126. secixtanjx + ln (secix +tan Jx).
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|(.+i)-M127. xsec->^|a; + -j-In(a;2 + l)

-z^[l^' + ')-128. iln (HX^ + l)-|a; + tan-'|a;.

CHAPTER VII

Find the equations of the tangent and normal to each of the follow-

ing curves at the point indicated:

129. y^ = 2x + y,a.t{l,2).

130. x^-yi = 5, at (3, 2).

131. x' + j/^ = x + 3y,Sit{-l,l).

132.. I* + 2/* = 2, at (1, 1).

133. 2/ = hix, at (1, 0).

134. a^{x + y) = a" {x - y), at (0, 0).

135. X = 2 cos 9, 2/ = 3 sin 9, at 9 =
2

136. r = a (1 + cose), at 9 = 2"

Find the angles at which the following pairs of curves intersect:

137. x^->ry'' = Sx, y^ (2 - x) = x'.

138. y'- = 2ax + a?, x^ = 2hy + ¥.

139. x' = Aay, (x^ + 4a2) i/ = Sa^.

140. 2/2 = 6x, x^ + y' = 16.

141. y = He' + €-"), y = i.

142. 2/- = sin X, 2/ = sin 2 X.

143. Show that all the curves obtained by giving different values to

n in the equation

are tangent at (a, 6).

144. Show that for all values of a and b the curves

x' - 3 xi/' = a, 3 x^ -2/3 = 6,

intersect at right angles.

Examine each of the following curves for direction of curvature and
points of inflection:

i.ir 1 —X

146. y = tan x.

147. X = 6y' -22/3.
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148. x = 2«-i,
2/ = 2« + i-

149. Clausius's equation connecting the pressure, volume, and tem-

perature of a gas is

RT c

^ v-a T(.v + by'

B, a, b, c being constants. If T is constant and p, v the coordinates

of a point, this equation represents an isothermal. Find the value of

T for which the tangent at the point of inflection is horizontal.

150. If two curves y = f (x), y = F (x) intersect at x = a, and
/' (a) = F' (o), but /" (a) is not equal to F" (o), show that the curves

are tangent and do not cross at x = a. Apply to the curves y = 7?

and 2/ = s' at X = 0.

151. If two curves y = f {x), y = F (x) intersect at x = a, and

f (o) = F' (a), /" (a) = F" (a), but /'" (o) is not equal to F'" (a),

show that the curves are tangent and cross at x = a. Apply to the

curves y = x^ and y = x^ + (x — ly at x = 1.

Find the radius of curvature on each of the following curves at the

point indicated:

152. Parabola y^ = ax at its vertex.

x^ i/^

153. Ellipse -; + r: = 1 at its vertices.
a-' 0'

154. Hyperbola ^' - |' = 1 at x = Va^ + ¥.

155. 2/ = In CSC x, at ( s , I
•

156. x = Jsin2/ — iln (sec y + tan y), at any point (x, y).

157. X = a cos' 6, y = a sin' 6, at any point.

158. Find the center of curvature of j/ = In (x — 2) at (3, 0).

Find the angle </' at the point indicated on each of the following

curves:

159. r = 2", at e = 0.

160. r = a + 6 cos 9, at e =

161.

2

r (1 — cos 0) = k, a.t e = =•

162. »• = a sin 2 9, at 8 = -J
•

4

Find the angles at which the following pairs of curves intersect:

163. r (1 — cose) = a, r = a (1 — cos9).
a a

164. r = asec2-, r — bcsc^--
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165. r = o cos 9, r = o cos 2 9.

166. r = asec9, r = 2awi0.

Find the equations of the tangent Unes to the following curves at

the points indicated:

2
167. X = 2 «, 2/ = - , z = fi, at < = 2.

168. X = sin t, y = cos t, z = sec t, a,tt = 0.

169. x^ + 1/2 + 2^ = 6, X + 2/ + 2 = 2, at (1, 2, -1).

170. z = x' + y^, !? = 2x - 2y, a,t (1, -1, 2).

CHAPTER VIII

171. A point describes a circle with constant speed. Show that

its projection on a fixed diameter moves with a speed proportional

to the distance of the point from that diameter.

172. The motion of a point (x, y) is given by the equations

x = lVa^~p + ^Bbi-^-,

2/ =
I
Vo^ + «2 + ^ In + v^T+TO.

Show that its speed is constant.

Find the speed, velocity, and acceleration in each of the following

cases:

173. X = 2 + 3<, 2/ = 4 -9«.

174. X = a cos {uit + a), 2/ = a sin (w( + a).

175. X = a-\- ad, y = b + pt, z = c + yt.

176. X = e' sin i, y = e' cos t, z = kt.

177. The motion of a point P (x, y) is determined by the equations

X = o cos (nl -\- a), y = b sin (nt + a).

Show that its acceleration is directed toward the origin and has a

magnitude proportional to the distance from the origin.

178. A particle moves with constant acceleration along the parab-

ola 2/2 = 2 ex. Show that the acceleration is parallel to the x-axis.

179. A particle moves with acceleration [a, o] along the parabola

2/2 = 2 ex. Find its velocity.

180. Show that the vector
I j-^ ' jz I

extends along the normal at

(x, y) and is in magnitude equal to the curvature at (x, y).
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CHAPTER IX

181. Show that the function

x^ -1
vanishes at x = — 1 and x = 1, but that its derivative does not vanish

between these values. Is this an exception to RoUe's theorem?

182. Show that the equation

i^ - 5a;H-4 =

has only two distinct real roots.

183. Show that

x^sin-

Lim —: = 0,
x = o sins

but that this value cannot be found by the methods of Art. 73. Explain.

184. Show that

, . 1 — cos a; .
Lim = 0.
1=0 cosx

Why cannot this result be obtained by the methods of Art. 73?

Find the values of the following limits:

185. Lim ^11^. 189. Lim
f
i - '-2^1

lifll— cos2x i = oV^ ^ /

,„^ T- V3i - Vl2 - X 190. Lima;"e-=^.
186. Lim -

! = 3 2a:-3 Vl9 -Ss

187. Lim

TTX 191. Lim -^^ r

—

tan-;f a;===osm2a; - xcotx
2 1

1 1 + esc (s — 1) 192. Lim ^sec x) x'

188. Lim'^^^-^)
1 =

= 1 cot (ttx)

193. The area of a regular polygon of n sides inscribed in a circle

of radius a is

no' sm- cos—
n n

Show that this approaches the area of the circle when n increases

indefinitely.

194. Show that the curve

x^ + 2/' = 3 xj/

is tangent to both coordinate axes at the origin.
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CHAPTER X
Determine the values of the following functions correct to four

decimals:

195. cos 62°. 198. v^O.
196. sin 33°. 199. tan-' (iV)-
197. hi (1.2). 200. esc (31°).

201. Calculate ir by expanding tan"' x and using the formula

I
= tan-i (1).

202. Given hi 5 = 1.6094, calculate hi 24.

203. Prove that

D= Vfh
is an approximate formula for the distance of the horizon, D being the

distance in miles and h the altitude of the observer in feet.

Prove the following expansions indicating if possible the values of

X for which they converge:

204. hi (1 + x') = In 10 + 4 (x - 3) - A (x - 3)2 + • • • .

yr>2 -J^ 'y6

205. ln(e^ +0=|-g +5+ ••
206. hi(l +sinx) =x - ix2+Ji= -t^eX<+ • • • .

207. e^secx = l+x + x2 + |xs + Jx<+ • .

208. In (x + VT+^') =x-i| + if|J+--..

209. In5^ = 2g + 3^ +^ + ...].

X* 7x*
210. In tan x = In x + -5- + -^ + • • • .

211. e»-- = l+x+|-,-^ .

212. «*'°" = l+^+|+^' + ^+--- •

Determine the values of x for which the following series converge:

rt»2 1^ -M

213. 1+x +l+f + j + • • • .

214. (x-l) + (^V(^V^^+....
215. 1 +2x + 3x2 + 4x'+ • • • .

01R »
I

a: + 2 (x + 2)' (x + 2)»
216. 2 + -Y-2-+^73-+-3TT-+' •
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CHAPTER XI

In each of the following exercises show that the partial derivatives

satisfy the equation given:

«,n , , , du
,

du du
2n.u = xy + yV, x~ + z~=y--

218. z = x« - 2 a;V + 2/*, ^ ^ + ^ E " °-

/ , M ^3m du\ du
219.^ = (x + 2/)lnxz, ^^_--j=^-.

220.. = (.+ i)tan-.(.-J), i+.^g=.^

221. u = xy + -,

^'^ + 2..z—̂ + z^^ = 2/^-,.

222. z = hi (a:^ + t), ^^ + ^^ = °-

223. ,* = ^+ 5,
y —z

Shi Shi^ _L^ = ^.
dxdy dydz dz' dx^'

Prove the following relations assuming that z iS'a function of x and y:

224. u = {x + y - zf,

du du du dz du dz

dy dx ~ dy dx dx dy

225. u = z+e^,
du du _ dz _ dz

""to y'di~''dx y dy

226. u = z{x^ - if),

du , 9m
't
—hx -T-
dx dy

y"£+-'£ = (^-y'){y%+-'i)

227. If a; = ^ (e* + e"'), 2/ = | (e* - e''), show that

'

Xdrje \dxjy

228. If xyz = o', show that

/dy\ /dj\ /dA ^
\dx)i\dylx\dz]y
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In each of the following exercises find As and its principal part,

assuming that x and y are the independent variables. When Aa; and

A^ approach zero, show that the difference of Az and its principal part

is an infinitesimal of higher order than Ax and Ay.

229. z = xy. 232. z - Vx'' + y^.

230. 2 = a;2 -y^ + 2x.

231. ^ = ,-^-

Find the total differentials of the following functions:

233. ax^ + bxV + cy*.

234. hi (a? + 2/2 +22).

235. a'tan-'^ -^Han-'--
X " y

236. yze' + zxe" + xye'.

237. If u = x"f (z), z = ^, show that

238. li u — f{r,s), r = x + y, s = x — y, show that

aw aw _ - aw

dxdy~ dr'

239. If M = / (r, s, 0, »• = -, s = ^, « = -, show that

du , du , du .
a;-:;

—

\-y t. r z r- = 0.
dx " dy dz

240. If a is the angle between the a>axis and the line OP from the

origin to P (x, y, z), find the derivatives of a in the directions parallel

to the coordinate axes.

241. Show that

(cot y — y sec x tan x) dx — {x esc' y + sec x) dy

is an exact differential.

Find the equations of the normal and tangent plane to each of the

following surfaces at the point indicated:

242. x^ + 2y' -z'' = 16, at (3, 2, -1).

243. 22; + 32/ -42 = 4, at (1, 2, 1).

244. z' = 8x2/, at (2, 1, -4).

245. y = z^-x'' + l, at (3, 1, -3).

246. Show that the largest rectangular paraUelopiped with a given

surface is a cube.
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247. An open rectangular box is to be constructed of a given amount

of material. Find the dimensions if the capacity is a maximum.
248. A body has the shape of a hollow cylinder with conical ends.

Find the dimensions of the largest body that can be constructed from

a given amount of material.

249. Find the volume of the largest rectangular parallelepiped that

can be inscribed in the eUipsoid.

a2
"^

62
"•" &

250. Show that the triangle of greatest area inscribed in a given

circle is equilateral.

251. Find the point so situated that the sum of its distances from

the vertices of an acute angled triangle is a minimum.
252. At the point (a;, y, z) of space find the direction along which a

given function F (x, y, z) has the largest directional derivative.



ANSWERS TO EXERCISES

Page 8

1. -i 4. -1.

2. V2. 5. 1.

3. -1. 6. |.

Page 14
3. 2.

5. The tangents are parallel to the x-axis at (— 1, —1), (0, 0), and

(1, —1). The slope is positive between (— 1, —1) and (0,0)

and on the right of (1, —1).

10. Negative.

11. Positive in 1st and 4th quadrants, negative in 2nd and 3rd.

Pages 27, 28

31. When x = A, y = ^ and dy = 0.072 da;. When x changes to 4.2,

dx = 0.2 and an approximate value for y is y + dy = 0.814.

This agrees to 3 decimals with the exact value.

32. When a; = 0, the function is equal to 1 and its differential is —dx.

When X = 0.3, an approximate value is then 1 — dx = 0.7.

The exact value is 0.754. *

34. 18. 35. (a, 2 a).

36. Increases when x < s. decreases when x > -x-

37.x = ±^. ^^--(^r^riy^ 2

38. tan-i|.

Page 31

,
2 _J: 2 - '

(x-iy (x-i)» v^;rz^2' ^a'-x'^^

3. {x-iy(.x + 2y(7x + 2), (a; -l)(x + 2)2(42x2 + 24 a;- 12).

4 2 _4. 7 l^Zjy _2_.
y' y x-r {.x-iy
X a' „ y* rii

x_ _J_
2y' At

Sx^y

154
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1Q (ft/ _ 12 tPa; _ 12

di' <(2 + 3 0'' <i2/' <(2-3 0''

Pages 36-38

1. e = 100 - 32 «, a = - 32. Rises until t = SJ. Highest point

h = 206.25.

2. « = «' - 12 i^ + 32 «, a = 3P - 24t + 32. Velocity decreasing

between i = 1.691 and t — 6.309. Moving backward when t

is negative or between 4 and 8.

7. w = 6 — 2 cf, a = —2 c. Wheel comes to rest when < = •^

10.
,
9 ir cu. ft./min. 15. 12ift./sec., 7|ft./sec.

11. 144 JT sq. ft./sec. 16. 4 Vs mi./hr.

12. Decreasing 8 ir cu. ft./sec. c tan fl , ,

13. V-3:l. "• -l^"/^*^"-

14. i V3 in./see.

18. Neither approaching nor separating.

19. 25.8 ft./sec. 20. 64 Vs ft./sec.

Pages 43-45

1. Minimum 3|. 2. Minimum — 10, maximum 22.

3. Maximum at x = 0, minima at a; = — 1 and x = +1.
4. Minimum when x =0. 13. - a Vs.

10. J ^2.

14. Length of base equals twice the depth of the box.

16. Radius of base equals two-thirds of the altitude.

4
17. Altitude equals - times diameter of base.

TT

IGirVs 20. Girth equals twice length.

27 21. Radius equals 2 Ve inches.

19. i (ai + 02 + 03 + 04).

22. The distance from the more intense source is '^2 times the dis-

tance from the other source.

23. 12 V2. 25. 194 ft.

24. [5^-|-6¥.

26. Radius of semicircle equals height of rectangle.

27. 4 pieces 6 inches long and 2 pieces 2 ft. long.

28. The angle of the sector is two radians.

29. At the end of 4 hours. ,
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30. He should land 4.71 miles from his destination.

o V2
2 '

35. 2imi./hr. 36. 13.6 knots.

31. —s— . <* being the length of side,

Page 48

1. Maximum = a, minimum = — n.

2. Maximum = 0, minimum = — (jV) •

3. Minimum = — 1.

4. Minimum = 0, maximum = fy.

10. Either 4 or 5.

Pages 52, 63

20. A = -i„ B = -A.
'JT ± g, n bemg any mteger.

21. Vs - |.

23. Velocity = — 2imA, acceleration = 0.

24. ^ miles per minute. 26. f+f^rVs.

„. „ ,. ,
28. 13 Vl3.

25. } radians per hour.

29. The needle will be inclined to the horizontal at an angle of about
32° 30'

30. 120°. „„ a

31. 120°.
^^- V

33. If the spokes are extended outward, they will form the sides of an

isosceles triangle.

Page 66

24. a = - cos c^, r being the radius of pulley and the angle formed

by the string and line along which its end moves.

25. 4V35.

Page 61

27. X = nir + cot~' 2, n being any integer.

30. a; < -3, x>2, or -2 < z < 1.

Pages 66, 66

1. 2y -x = 5, y + 2x = G.

2. 3/ + 4a = 8, iy — x = \b.

3. 2 2/ =F a; = ±a, ^ ± 2 2 = ±3 a.
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4. 2/ = a (x In 6 + 1), x -\- ay]nb = a?]nb.

5. y —
2 2 ^(--i)' ^-i+i^Ki)=«-

6. ^ + ^' = 1. fc'aJiy - a^ViX = (6^ - tf) ajij/i.

7. a + 2/ = 2, a; - 2/ = 2. 12. 90°.

8. a; + 3 2/ = 4, j/-3a; = 28. 13. tan-i2V2.
9. 2/ + a: tan h<t>i = CKt>i tan ^ 0i. _ In 10 — 1

10. 90°, tan-'f.
1^. tan ij^^^-j-^-

11- 4^°-
15. tan-' 3 Vs.

Page 70

1. Point of inflection (0, 3). Concave upward on the right of this

point, downward on the left.

2. Point of inflection (J, — f). Concave upward on the right of thia

point, downward on the left.

3. The curve is everywhere concave upward. There is no point of

inflection.

4. Point of inflection (1, 0). Concave on the left of this point, down-

ward on the right.

5. Point of inflection I —2, — ^)- Concave upward on the right,

downward on the left.

6. Points of inflection at a; = ±—;=. Concave downward between
V2

the points of inflection, upward outside.

7. Points of inflection (0, 0), (±3, ±1). Concave upward when
-3 < X < or a; > 3.

8. Point of inflection at the origin. Concave upward on the left of

the origin.

1. ±2V6.

3 ^
4. 3V2.

5. e^ v'2'

8. fo.

Pages
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Page 79

There are two angles 4/ depending on the direction in which s is

measured along the curve. In the following answers only one

of these angles is given.

' --(I)- t r •-*

2 1. 7. 0°, 90°,andtaii-i3V3.
4 8. fl= ±ijr.

3 Z. 10. 3.
^- 3

Page 84

1.

I -V2 v-l ^"T ^- *^"'
_ y — 1 4__ k

6. tan '—=•
X — e _

^ ^ g — 1 V2
e

2/«
2 7. 69° 29'.

3.

irfc

'.-e^ y 2

Pages 92, 93

1. The angular speed is
^ ^

, where a; is the abscissa of the moving

point.

2. If xi is the abscissa of the end in the a>axis and yi the ordinate of

the end in the j/-axis, the velocity of the middle point is

[*". '£].2yi_

the upper signs being used if the end in the avaxis moves to the

right, the lower signs if it moves to the left. The speed is ^
—

2j/i

3. The velocity is

[v — <ia sin 0, aa cos fl],

where 6 is the angle from the a>axis to the radius through the

moving point. The speed is

Vt^ + aW — 2 ooi!) sin 0.

6. The boat should be pointed 30° up the river.

7. Velocity = [a, h, c — gt], Acceleration = [0, 0, —g].

Speed = Vo" + 62 + (e - gt)^.
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Velocity = [oa (1 — cos<^), ousin^],

Speed = ao> Vz — 2 cos (^ = 2 aw sin J (^,

Acceleration = [a«^ sin <^, aa'cos<^].

10 r 3 1)' sin 1 9 St!" coafq
L 4a 6in|fl' 4ajSinJeJ

12. X = «J cos ait, y = vt sin aj<. The velocity is the sum of the par-

tial velocities, but the acceleration is not.

13. X = a cos ait -\-b cos 2 at, j/ = a sin ui + 6 sin 2 at. The velocity is

the sum of the partial velocities and the acceleration the sum
of the partial accelerations.

14. X = (Mit — a sin (ui + uj) <, y = a cos (coj + aj) t. The velocity is

the sum of the partial velocities and the acceleration the sum
of the partial accelerations.

Page 100

2. A.
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Pages 123, 124

1. Increment = —0.151, principal part = —0.154.

4. -ip=n{-j— — ) Since dl and dg may be either positive or

negative, the percentage error in T may be | the sum of the

percentage errors in I and g.

5. The percentage error in g may be as great as that in s plus twice

that in T.

13. -'^+^.
15.

2''-"^
zx — 2uv

14. -{x' + y' + xy-z'^).

Pages 131, 132

dx dx dy dx "' \dxjy dx dz dx

dx dx Bydx dz\dx dydx'

df_aF_aldF 13. 3V3-4.
_ dz _ dy dx dx dy g
^'

d'x ^ WW" 14, --3(a:co8Q:+2/oos/3+zcos7).

dy dz dy

Page 135

1. £^1 =^ = 1:^2, (a; _ 1) +2(2/ -2) +2(2- 2) =0.

2. Normal, y + ix = H, z = 3.

Tangent plane, a; — 4 2/
— 14 = 0.

„x — 3 2/ — 4 z — 5 „ ,. - -
3. —3~= 4^ = ^15" • 3x + 42/-5z = 0.

.X — 5 y — 1 z — 3
4. ^—=5 Z3-' x + 5y -Zz-l =0.

. X — 5y— IZ— 1 a, en
5. —^ = '^-^' g— • X -42/-6Z + 5 =0.

6. x + z = 2/-2=± "^2.

Pages 138, 139

1. The box should have a square base with side equal to twice the

depth.

2. The cylinder and cone have volumes in the ratio 3 : 2 and lateral

surfaces in the ratio 2 : 3.

4. The center of gravity of the triangle ABC,
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Acceleration, along a straight line,

33.

angular, 34.

in a curved path, 90, 91.

Angle, between directed lines in

space, 79, 80.

between two plane curves, 64.

Approximate value, of the incre-

ment of a fvmction, 14, 15,

118-120.
Arc, differential of, 72.

Continuous function, 10, 113.

Convergence of infinite series, 107-

111.

Curvature, 73.

center and circle of, 75.

direction of, 67.

radius of, 74.

Curve, length of, 70.

slope of, 11.

Dependent variables, 2, 115.

Derivative, 12.

directional, 129.

higher, 28, 29, 114.

of a function of several vari-

ables, 124-127.
partial, 114.

Differential, of arc, 72.

of a constant, 20.

of a fraction, 22.

of an nth power, 22.

of a product, 21.

of a sum, 20.

total, 120, 121.

Differentials, 15.

exact, 130, 131.

of algebraic functions, 19-31.

of transcendental functions, 49-
62.

partial, 120.

Differentiation, of algebraic func-
tions, 19-31

Differentiation, of transcendental
functions, 49-62.

partial, 113-139.
Directional derivative, 129.

Direction cosines, 80, 81.

Direction of curvature, 67.

Divergence of infinite series, 107-
111.

Exact differentials, 130, 131.

Exponential functions, 56-62.

Function, continuous, 10, 113
discontinuous, 10.

explicit, 1.

implicit, 2, 127, 128.

irrational, 2.

of one variable, 1.

of several variables, 113.

rational, 2.

Functions, algebraic, 2, 19-31.

exponential, 56-62.
inverse trigonometric, 54-56.
logarithmic, 56-62.
transcendental, 2, 49-62.
trigonometric, 49-53.

Functional notation, 3.

Geometrical applications, 63-84.

Implicit functions, 2, 127.

Increment, 10.

of a function, 14, 15, 118, 119.

Independent variable, 2.

Indeterminate forms, 95-100.
Infinitesimal, 7.

Infinite series, 106-112.
convergence and divergence of,

107-111.
Maclaurin's, 106.
Taylor's, 106.

Inflection, 67.
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Length of a curve, 70.

Limit, of a function, 5.

, sinS .„of— ,49.

Limits, 4-9.

properties of, 5, 6.

Loganthms, 56, 58.

natural, 58.

Maclaurin's series, 106.

Maxima and minima, exceptional

types, 45, 46.

method of finding, 42, 43.

one variable, 39-48.
several variables, 136-138.

Mean value theorem, 101.

Natm-al logarithm, 58.

Normal, to a plane curve, 63.

to a surface, 133, 134.

Partial derivative, 114.

geometrical representation of,

116, 117.

Partial, differentiation, 113-139.
differential, 120.

Plane, tangent, 134.

Point of inflection, 67, 68.

Polar coordinates, 77-79.
Power series, 110, 111.

operations with. 111.

Rate of change, 32.

Rates, 32-38.

related, 35.

Related rates, 35.

Rolle's theorem, 94.

Series, 106-112.
convergence and divergence of,

107-111.
Maclaurin's, 106.

power, 110, 111.

Taylor's, 106.

Sine of a small angle, 49.

Slope of a curve, 11.

Speed, 85.

Tangent plane, 134.

Tangent, to a plane curve, 63.

to a space curve, 81-83.
Taylor's, theorem, 102.

series, 106.

Total differential, 120, 121.

Variables, change of, 30, 127.

dependent, 2, 115.
independent, 2.

Vector, 85.

notation, 88.

Velocities, composition of, 89, 90.

Velocity, components of, 86, 87.
along a curve, 85-89.
along a strai^t line, 32.
angular, 34.










